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ABSTRACT 

A NEW MECHANISM-DRIVEN BYPASSING STRATEGY FOR DIRECT FACTOR Xa 

INHIBITORS REVEALS AN UNEXPECTED PROPERTY OF TARGET SPECIFIC 

ANTICOAGULANTS 

 

Nabil K. Thalji 

Rodney M. Camire 

 

Hemostasis is a crucial component of vascular homeostasis that prevents blood loss 

while also maintaining vascular patency. Hemostasis is achieved, in part, through a 

cascade of serine proteases that are sequentially activated, culminating in formation of 

the effector protease, thrombin. Normally, this process is tightly regulated, but loss of 

regulation can lead to bleeding or excessive clot formation (thrombosis). In the event of 

thrombosis, anticoagulation is the mainstay of care. Numerous pharmacokinetic 

problems with the oral anticoagulant warfarin prompted the development of new oral 

agents that directly inhibit the serine proteases of coagulation. In particular, several 

active site inhibitors of coagulation factor Xa (FXa) have recently been approved and are 

at least as effective as warfarin for the prevention of thrombosis. However, they, like 

warfarin, increase the risk of bleeding, and there are no approved countermeasures to 

treat or prevent bleeding with these direct FXa inhibitors. We evaluated whether a 

variant of FXa (FXaI[16]L) could reverse the effects of the direct FXa inhibitor 

rivaroxaban. FXaI[16]L has poor active site function and a long plasma half-life but has 

high catalytic activity at the site of vascular injury, making it an effective pro-hemostatic 
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agent. FXaI[16]L potently reversed the effects of rivaroxaban in in vitro studies and animal 

models of coagulation. Kinetic studies revealed that both FXaI[16]L and wt-FXa are highly 

inhibited by rivaroxaban at therapeutic concentrations when bound to the cofactor FVa. 

Despite this high level of inhibition with rivaroxaban, both FXaI[16]L and wt-FXa support 

thrombin generation. To explain this discrepancy, we measured the kinetics of FXa 

inhibition by antithrombin III (ATIII), a key regulator of FXa activity in plasma. 

Rivaroxaban impaired ATIII-dependent FXa inhibition by creating a pool of reversibly-

inhibited FXa, and kinetic simulations indicated that, under these conditions, a steady-

state of free, uninhibited FXa is established. Thus, there is a paradoxical increase in the 

level of free FXa which explains how FXaI[16]L can generate thrombin in the presence of 

rivaroxaban. These results reveal a previously unreported, unintended consequence of 

direct FXa inhibitors that may have important implications. Further, FXaI[16]L may be 

able to fill the unmet clinical need for a rapid, hemostatic reversal agent for these new 

anticoagulants. 
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CHAPTER 1: 

Introduction: Comprehensive literature review 

 

Nabil K. Thalji 
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Division of Hematology, Department of Pediatrics, The University of Pennsylvania, Perelman 

School of Medicine, Philadelphia, PA 19104. 
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Overview of Hemostasis 

Hemostasis is the cellular and biochemical process that prevents blood loss following 

vascular injury. It is a critical component of cardiovascular homeostasis that stops 

bleeding while maintaining vascular patency. Hemostasis is achieved through the 

combined function of cellular components, including activated platelets and endothelial 

cells, and a cascade of homologous serine proteases and their cofactors. Dysfunction of 

any of these aspects of hemostasis can lead to human disease, either from excessive 

bleeding or from thrombosis, pathological clot formation that compromises the flow of 

blood. On the other hand, selective pharmacologic modulation of coagulation can be 

used to treat bleeding or thrombotic disorders [1]. 

The Coagulation Cascade 

Coagulation is limited to the site of vascular injury in part because the serine proteases of 

coagulation and their cofactors are synthesized as inactive precursors known as 

zymogens or procofactors, respectively. The coagulation cascade, therefore, is the 

process by which zymogens and procofactors are sequentially and selectively proteolyzed 

to generate active proteases or cofactors, culminating in highly localized thrombin 

activation. Thrombin, the primary effector protease of coagulation, has both 

procoagulant and anticoagulant functions. It cleaves soluble fibrinogen into fibrin, which 

polymerizes into an insoluble mesh that constitutes the major protein component of a 

clot. Thrombin also initiates a positive feedback loop which amplifies the upstream 

coagulation cascade to generate more thrombin. Thrombin can potentiate the platelet 

response to injury through cleavage of protease-activated receptors (PARs) on the 
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platelet membrane, which enhances platelet activation. Finally, in addition to thrombin's 

pro-hemostatic roles, thrombin bound to the transmembrane protein thrombomodulin 

is also able to modulate coagulation by activating the anticoagulant protease, protein C 

(PC) [2]. 

Thrombin is activated from prothrombin, its zymogen precursor, by the prothrombinase 

enzyme complex made up of the serine protease factor Xa (FXa) and its cofactor Va 

(FVa), assembled on an anionic phospholipid membrane. FXa is, in turn, activated from 

the zymogen, factor X (FX) by either the extrinsic or intrinsic tenase (Xase) complexes 

(Fig. 1). The extrinsic Xase complex is generated following endothelial injury by 

exposure of the integral membrane protein, tissue factor (TF), to the blood. TF binds the 

protease, factor VIIa (FVIIa) and the complex cleaves FX to FXa. Thus, the extrinsic 

Xase effectively allows for communication between damaged endothelium and the 

coagulation cascade. The intrinsic Xase, on the other hand, is critical for signal 

amplification and positive feedback of coagulation. This complex of the protease FIXa 

and its cofactor FVIIIa assembled on anionic membranes allows for high levels of FXa to 

be generated, thereby enhancing the rate of thrombin generation. FIXa can be activated 

by either TF/FVIIa or factor XIa (FXIa). Thrombin exerts positive feedback on the entire 

pathway by catalyzing cofactor activation (FVa and FVIIIa), as well as FXI activation [2]. 

Serine Protease Biochemistry 

Serine proteases are a large family of proteases that utilize an active site serine residue as 

the nucleophile for peptide bond hydrolysis. Two prototypical and extensively studied 

eukaryotic serine proteases are trypsin and chymotrypsin. The catalytic cycle of serine 
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proteases consists of two nucleophilic acyl substitution reactions to achieve proteolysis 

(Fig. 2). In the first reaction, the catalytic serine is the nucleophile and the amino group 

of the scissile peptide bond is the leaving group, thus liberating the carboxy-terminal 

fragment of the target protein. The amino-terminal fragment remains covalently linked 

to the protease via an ester bond with the serine hydroxyl. In the second substitution 

reaction, this fragment is released from the enzyme using free water as the nucleophile. 

Both substitution steps are catalyzed by a stereotyped active site motif known as the 

"catalytic triad," which consists of the serine nucleophile (Ser[195] in the chymotrypsin 

numbering system, described below), a histidine residue (His[57]) which acts as a base to 

enhance the nucleophilicity of the serine, and an aspartate residue (Asp[102]) which 

hydrogen bonds with the histidine and enhances its basicity. In addition to the catalytic 

triad, a pair of backbone N-H bonds (Gly[193] and Ser[195]] form an oxyanion hole to 

stabilize the tetrahedral oxyanionic intermediates of the substitution reactions [3]. 

Enzyme Complexes in Coagulation 

Despite the high degree of homology between coagulation serine proteases and other 

serine proteases like chymotrypsin and trypsin, coagulation serine proteases are unique 

in that they typically function in complex with a large protein cofactor on an acidic 

membrane surface. This is due in large part to the need to localize coagulation to the 

injured vascular surface. Assembly of these protease-cofactor complexes on membrane 

surfaces requires divalent calcium ions. In the absence of cofactor, membranes, and 

divalent calcium ions, FVIIa, FIXa, and FXa are extremely poor catalysts of 

macromolecular substrate proteolysis. When complexed with the appropriate cofactor, 

catalysis by these proteases is accelerated by several orders of magnitude [4]. For this 
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reason, cofactor activation is an extremely important determinant of coagulation cascade 

activity, and cofactor activity is tightly regulated to prevent thrombosis. For example, 

FVIIIa is a heterotrimer that dissociates rapidly such that its half-life following activation 

is 1-2 minutes [5, 6]. FVa is a much more stable molecule, but is inactivated following 

hydrolysis by activated protein C (aPC), an anticoagulant protease. Underscoring the 

critical nature of this process, mutations in FV/FVa that prevent aPC inactivation (i.e. FV 

Leiden) lead to thrombosis [7, 8]. 

Most coagulation serine proteases and their zymogens engage membranes via a 

specialized domain containing between 9 and 12 γ-carboxyglutamic acid (Gla) residues. 

Upon divalent calcium binding, this "Gla-domain" undergoes a conformational change 

that allows it to bind to anionic phospholipids with high affinity [4]. The cofactors Va 

and VIIIa do not have Gla-domains, but bind membranes via their homologous C1 and 

C2 domains [9-13]. 

Post-translational γ-carboxylation of glutamic acid residues within the Gla-domains of 

clotting factors is catalyzed by the vitamin-K-dependent enzyme γ-glutamyl carboxylase. 

In the process, vitamin K is oxidized from a hydroquinone to a quinone epoxide, which is 

subsequently recycled back to functional vitamin K by the vitamin K epoxide reductase 

(VKOR). Factors VII, IX, X, PC, protein S, protein Z, and prothrombin all possess Gla-

domains, and are therefore known as the vitamin K-dependent clotting factors [14]. 

Unlike most enzymes, coagulation serine proteases engage their macromolecular 

substrates primarily via regions distinct from the active site [15-18]. Thus, the specificity 

of coagulation serine protease complexes for substrate binding is determined primarily 

by affinity for exosites. Obviously, the specific sequences surrounding the scissile bond 
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are critical for catalysis since they must dock in the active site, but this is a rapid, 

intramolecular process compared to intermolecular binding of the substrate to an exosite 

[18]. Exosite-mediated substrate binding has important implications with respect to the 

inhibition kinetics of protease inhibitors. Small active site probes display competitive 

inhibition with respect to small peptide substrates, but are noncompetitive with respect 

to macromolecular substrates [17]. Agents that bind exosites, on the other hand, are 

competitive with respect to macromolecular substrate cleavage [19]. 

Factor X and Xa 

FXa is the penultimate protease in clotting cascade that binds to FVa on a membrane 

surface to generate the "prothrombinase complex" that activates prothrombin to 

thrombin. In humans, its zymogen precursor, FX, circulates in plasma at a concentration 

of 10 µg/mL (~170 nM) [20, 21]. It is synthesized in the liver as a single polypeptide 

chain that is proteolytically processed into a 59 kDa heterodimer of two disulfide-linked 

subunits: a 17 kDa 139 residue “light chain” and a 42 kDa, 306 residue “heavy chain.” 

The light chain, which has no homology with chymotrypsin-like serine proteases, 

contains the Gla-domain and two epidermal growth factor homology domains. The heavy 

chain contains the serine protease domain as well as a 52-amino acid “activation 

peptide” at its amino terminus (Fig. 3). Removal of the activation peptide following 

limited proteolysis between Arg[15] and Ile[16] releases the activation peptide to yield the 

active protease [22]. 
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Chymotrypsin Numbering System 

Because of the substantial homology between chymotrypsin-like serine proteases, a 

standard nomenclature has been developed based on the residue numbering of 

chymotrypsin that allows for more meaningful comparison of residues between different 

proteins [23]. For FX, the amino-terminal light chain is non-homologous with 

chymotrypsin and is thus numbered sequentially from 1-139. Light chain residue 

numbers are denoted by an L preceding the residue number (for example, ArgL139). 

Homology with chymotrypsin exists in the heavy chain, and thus the heavy chain will be 

numbered in brackets according to the chymotrypsin numbering system (for example, 

Ser[195]). 

Structural Features of FXa 

The protease domain of FXa shares the same overall fold with other chymotrypsin-like 

serine proteases. The heavy chain is typically depicted in the "standard orientation," as 

shown in (Fig. 3). In this orientation, the light chain, if shown, would be behind the 

heavy chain, into the page. The standard orientation places the active site and catalytic 

triad in the middle, in front of the page. An α-helix, often referred to as the "162-helix," is 

thought to form at least part of the interface with FVa. Two loop regions, [183]-[189] and 

[221]-[225], form the sodium binding site in the protease [24]. 

Regulation of FXa Activity 

The activity of FXa in plasma is tightly controlled by several inhibitors, including 

antithrombin III (ATIII) [25], tissue factor pathway inhibitor (TFPI) [26], and α2-
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macroglobulin (α2M) [27]. Together, these inhibitors result in a very short (1-2 minute) 

activity half-life of FXa [28, 29]. These plasma inhibitors are critical to the function of 

the entire coagulation cascade because they effectively create a high barrier to the 

propagation of coagulation. This is likely why the intrinsic pathway is so important for 

hemostasis, since it enables rapid FXa generation to overcome its rapid inhibition. In 

fact, it was recently demonstrated that pharmacologically disrupting these natural 

antagonists of FXa mitigates the effects of an intrinsic pathway defect [30]. 

Perhaps the most prominent coagulation protease inhibitor in plasma is ATIII. A 

member of the serpin superfamily of protease inhibitors, ATIII is present in plasma at a 

concentration of 0.12 mg/mL (2.3 µM) and irreversibly inhibits not only FXa, but also 

thrombin and FIXa. Like other serpins, ATIII contains a reactive center loop (RCL) 

region which is responsible for binding to the active site of the protease. Once bound, the 

protease can cleave the RCL like any other protein substrate, rendering ATIII inactive. 

However, cleavage of the RCL results in a rapid, marked conformational change in ATIII. 

If this conformational change occurs prior to hydrolysis of the ester intermediate, the 

protease will become irreversibly denatured [25].  

TFPI is a potent inhibitor of not only FXa, but also of FVIIa and TF. Importantly, TFPI 

inhibition of the extrinsic Xase complex is quite weak in the absence of FXa. TFPI 

contains three Kunitz-type inhibitory domains (K1, K2, and K3). To inhibit FXa, the K2 

domain first binds to free FXa in a reversible, active site-dependent fashion. Binding of 

FXa enhances the affinity of the K1 domain of TFPI for FVIIa/TF, allowing formation of 

a tight, irreversible quaternary complex [26].  
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α2M is a large homotetrameric glycoprotein that inhibits several plasma proteases, 

including FXa [27], and is present in plasma at a concentration of 1.2 mg/mL (~1.7 µM) 

[31]. Its 180 kDa subunits form disulfide-linked homodimers which then further 

dimerize noncovalently to generate the 720 kDa homotetramer [27]. α2M inhibits 

proteases via a cage-like mechanism [32]. The middle of each subunit contains the "bait 

region," which is susceptible to limited proteolysis by the target protease. Cleavage of the 

bait region results in a conformational change that traps the protease within the 

tetramer. For many protease targets, the conformational change also exposes a buried 

cysteine-glutamate thioester bond that then exchanges with a surface lysine on the 

protease surface to covalently trap the protease in the cage [27]. In this manner, α2M 

sterically prevents the protease from accessing its macromolecular substrates [32]. 

However, unlike ATIII and TFPI, α2M does not substantially alter active site function of 

the protease, as evidenced by the fact that protease-α2M complexes retain a high degree 

of catalytic activity towards small peptidyl substrates that can pass through small pores 

in the complex to access the trapped enzyme [27]. 

Although ATIII, TFPI, and α2M are all able to rapidly inhibit FXa, their relative 

contributions to FXa inhibition in plasma are not equal. Experiments using 125I-labeled 

FXa and an SDS-polyacrylamide gel electrophoresis method revealed that ATIII is the 

predominant inhibitor of FXa in vitro in human or mouse plasma, with α2M accounting 

for only 11% of total inhibition [33]. However, α2M was found to be the major inhibitor of 

FXa in vivo, with ATIII playing an important but minor (38%) role in regulation of FXa 

activity. The role of TFPI in the regulation of FXa, on the other hand, it likely indirect 

because it is reversible when only engaged with FXa, and because its plasma 

concentration is quite low (2-2.5 nM) [34, 35]. Instead, since TFPI binding to FXa 
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dramatically enhances its ability to irreversibly inhibit FVIIa/TF, FXa is effectively a 

cofactor that allows TFPI to inactivate the extrinsic Xase [36]. 

The common theme of the irreversible regulators of FXa is their dependence on FXa 

active site maturity and availability. They do not inhibit the FX zymogen to an 

appreciable extent [37]. Furthermore, ATIII and α2M require not only conformational 

availability of the active site, but also catalytic function. Thus, anything that impairs 

active site binding or catalytic activity should impact the function of these protease 

inhibitors. 

The Zymogen-to-Protease Transition 

The negative regulators of FXa described above are opposed by the generation of FXa via 

the extrinsic or intrinsic pathways. Activation of FXa results in key changes in the 

enzyme that ultimately allow it to activate prothrombin. Prior to activation, FX binds 

very weakly, if at all, to FVa [38-40]. Furthermore, FX has extremely poor active site 

accessibility and function, as evidenced by its virtual inability to be labeled using active 

site probes such as peptide chloromethyl ketones [41]. In contrast, FXa binds its cofactor 

on membranes with low nanomolar affinity [42] and prothrombin with high 

nanomolar/low micromolar affinity [4, 43]. Even in the absence of membranes and FVa, 

FXa can rapidly hydrolyze small peptide substrates and is highly susceptible to inhibitors 

that occupy the active site [4, 44]. 

The marked difference in the biochemical properties of zymogen FX and the FXa 

protease can be explained in large part by an activation mechanism common to all 

trypsin and chymotrypsin-like serine proteases. Limited proteolysis of FX by the 
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intrinsic or extrinsic Xase complexes results in removal of the activation peptide from 

the amino-terminus of the heavy chain [22, 45]. While it is plausible that removal of the 

activation peptide may directly contribute to revealing protease characteristics, its 

primary importance is thought to be through the exposure of a new amino terminus of 

the heavy chain, which inserts into a hydrophobic pocket and forms a salt bridge 

between Ile[16] (the newly revealed amino-terminal residue) and Asp[194] [24, 46-48]. This 

leads to a series of conformational changes that yield the mature protease. Remarkably, 

despite the dramatic functional difference between zymogen and protease, the 

conformational changes between the two forms of the protein are quite modest [45]. In 

fact, crystal structures of bovine chymotrypsinogen [49] and chymotrypsin [50, 51] 

indicate that the orientation of catalytic triad residues is virtually unchanged between 

zymogen and protease. Instead, the zymogen-to-protease transition is limited to a few 

regions of the protein collectively termed the "activation domain." The activation domain 

consists primarily of the Ser[189]-Asp[194], along with the two sodium binding loops, the 

autolysis loop, and the activation loop (Ile[16]-Gly[19]) [47, 49-53]. To form the 

conformationally and catalytically mature active site, the Ser[189]-Asp[194] loop rotates to 

form the mature substrate binding cleft and also repositions Gly[193] such that its 

backbone N-H is properly oriented for hydrogen bonding to and stabilizing the oxyanion 

transition state (the oxyanion hole). 

Importantly, the zymogen-to-protease transition is actually a dynamic equilibrium 

between a "zymogen-like" conformation and a "protease-like" conformation [47]. The 

relative abundance of these conformations is determined by the degree to which each is 

stabilized. For example, for most serine proteases, insertion of the new amino terminus 

that is exposed following activation peptide removal stabilizes the protease-like 
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conformation such that the equilibrium lies far towards the protease-like state. In the 

uncleaved zymogen, the activation peptide prevents this insertion, and thus the 

zymogen-like state predominates [45, 47]. However, several studies have demonstrated 

the tunability of the zymogen-to-protease transition. For example, uncleaved 

trypsinogen can be driven to adopt a protease-like conformation with short peptide 

mimics of the new amino terminus or high concentrations of strong active site ligands 

[46, 53-55]. Conversely, mutations in the activation domain of cleaved proteases (ex. 

mutations in the sodium binding loop of FXa) result in increased zymogenicity [56-58]. 

Residues [16]-[19] (H2N-IVGG-) of the new amino-terminal activation loop are highly 

conserved in FX/Xa, as is the Asp[194] residue that forms an internal salt bridge pair with 

Ile[16]. Mutation of Asp[194] in FXa results in a catalytically inactive protein (Camire 

laboratory, unpublished data), further highlighting the importance of amino-terminal 

insertion in stabilization of the protease conformation. Through mutagenesis of the Ile[16] 

and Val[17] residues, our group has demonstrated that disruption of amino-terminal 

insertion can shift the equilibrium between zymogen and protease towards the zymogen-

like conformation (Fig. 4) [44]. These zymogen-like FXa variants, as expected, have 

poorly formed active sites and, accordingly, poor amidolytic activity when assessed using 

oligopeptidyl substrates. In addition, these variants are resistant to active site-dependent 

plasma protease inhibitors ATIII and TFPI. This results in a much longer activity half-

life of these variants compared to wild-type (wt)-FXa, with the degree of prolongation 

proportional to the zymogenicity of the variant. However, since FVa only binds the 

protease conformation with high affinity, saturating concentrations of the cofactor 

thermodynamically rescue active protease conformation and function. Thus, these 

variants have low catalytic activity and long half-lives when free in plasma, but, when 
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assembled in the prothrombinase complex, they have near-normal ability to generate 

thrombin [44, 59]. 

Because of the unique properties of these amino-terminal zymogen-like FXa variants, 

they have therapeutic potential as procoagulants. Their longer half-lives make them 

more suitable pharmacologic agents than WT FXa, and their zymogenicity while free in 

plasma renders relatively inert. Using several animal models of the bleeding disorder 

hemophilia, we have previously shown that zymogen-like FXa variants, and in particular, 

FXaI[16]L, are highly effective at restoring normal hemostasis [60, 61]. 

Pharmacologic Anticoagulation 

Anticoagulation is the mainstay of care for the prevention and treatment of 

thromboembolic diseases including atrial fibrillation, pulmonary embolism (PE) or deep 

venous thrombosis (DVT), and patients with prosthetic heart valves [62, 63]. 

Anticoagulants can be grouped into two categories based on route of administration: 

parenteral and oral. In the hospital setting, parenteral anticoagulation is common and 

practical for short-to-medium term anticoagulation. However, many patients require 

chronic outpatient anticoagulation, for which oral anticoagulation is preferred [62]. 

Parenteral Anticoagulants 

Several agents are available for parenteral anticoagulation. The most widely used is 

heparin and its derivatives. Heparin is a naturally occurring glycosaminoglycan that 

exists as a heterogeneous mixture of polymers of different length. Unfractionated 

heparin (UFH) binds to ATIII and accelerates its inhibition of FXa, FIXa, and thrombin 
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by approximately 2,000 to 4,000-fold [25]. This acceleration is mediated in large part by 

a specific pentasaccharide sequence within the heparin polymer [64]. In addition, the 

mechanism of UFH acceleration of thrombin inhibition, but not that of FXa or FIXa, 

requires the polysaccharide to bridge ATIII and thrombin (~2,000-4,000-fold) on the 

rate of thrombin inactivation by the serpin [25]. Fractionating heparin such that 

polymers with a mean molecular weight of around 5 kDa remain results in low molecular 

weight heparin (LMWH). LMWH is not large enough to bind both ATIII and thrombin, 

and thus it is unable to bridge thrombin and ATIII. For this reason, LMWH is selective 

for FXa and FIXa, and has very little effect on thrombin inhibition [65]. The minimal 

pentasaccharide is also used as an anticoagulant, known as fondaparinux, and primarily 

accelerates FXa inhibition [64]. An alternative to heparins is a class of drugs derived 

from hirudin, a natural anticoagulant found in the saliva of leeches [66]. Hirudin directly 

inhibits thrombin by binding both the active site and exosite 1 (where fibrinogen binds). 

Other hirudin derivatives include lepirudin, a minimally modified recombinant hirudin, 

and bivalirudin, a synthetic peptidyl hirudin analog. Finally, argatroban is a small 

molecule that inhibits only the active site of thrombin [67]. It is not orally bioavailable, 

and is thus not suitable for oral anticoagulation. 

Oral Anticoagulants 

For more than 60 years, the only option available for oral anticoagulation was an indirect 

clotting factor antagonist, warfarin [63]. Warfarin inhibits VKOR, thereby preventing 

proper γ-carboxylation of Gla residues. While warfarin has excellent efficacy as an 

anticoagulant, its use has been plagued by complex pharmacogenetics, common drug 

interactions, and slow onset and offset.  These characteristics necessitate routine 
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monitoring of clinical coagulation parameters to maintain patients within a narrow 

therapeutic range of anticoagulation [63, 68].  

In the last decade, target specific oral anticoagulants (TSOACs), which directly inhibit 

thrombin [69] or FXa [70-72], have been developed. Three direct FXa inhibitors, 

rivaroxaban, apixaban, and edoxaban, have gained FDA approval in the last 5 years. 

Biochemically, these agents are reversible active site inhibitors of FXa. Thus, they display 

competitive inhibition kinetics with respect to small peptide substrates, but are 

noncompetitive inhibitors with respect to prothrombin, the natural macromolecular 

substrate [70-72]. 

Pharmacologic Properties of Direct FXa Inhibitors 

The three approved direct FXa inhibitors are all administered as the active agent and do 

not require metabolism for in vivo efficacy. They have good oral bioavailability and reach 

peak plasma concentration within 1-4 hours [73-75]. Since they directly inhibit FXa, 

their activity correlates well with plasma concentration. This is in contrast to warfarin, 

whose onset of action is much slower and is primarily determined by the half-lives of the 

vitamin K-dependent factors [63]. Direct FXa inhibitors also have relatively short plasma 

half-lives (6-14 hours) [73, 76, 77] compared to warfarin. They are extensively plasma 

protein bound (55% for edoxaban [78], 87% for apixaban [79], and 95% for rivaroxaban 

[80]), which has important implications for reversal strategies (discussed below). 

Rivaroxaban, apixaban, and edoxaban are all excreted via both the kidneys and the feces, 

with the renal pathway being major (66%) for rivaroxaban [77] and substantial but 

minor for apixaban [73] and edoxaban [76] (25% and 36-45%, respectively). 
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Clinical Efficacy of Direct FXa Inhibitors 

The efficacy of rivaroxaban, apixaban, and edoxaban has been evaluated in several large, 

multi-center clinical trials for multiple indications [81-97]. All three agents are approved 

for the prevention of stroke or systemic embolism in patients with nonvalvular atrial 

fibrillation. For this indication, the new agents are at least noninferior to warfarin [82, 

95, 97], and a large meta analysis of the atrial fibrillation data from all direct FXa 

inhibitors indicated that the new agents were superior to warfarin [98]. Rivaroxaban and 

apixaban have also been studied and approved for the initial treatment of DVT and PE, 

as well as for prevention of DVT or PE recurrence in these patients following initial 

therapy [83, 85, 88, 89]. Edoxaban was also compared to warfarin for treatment of DVT 

or PE by the Hokusai VTE group following at least 5 days of LMWH or UFH therapy 

[96]. It was found to be noninferior to warfarin, and therefore was approved with the 

caveat that a parenteral anticoagulant should be used for the first 5-10 days. Edoxaban 

has not been evaluated for reduction of DVT or PE risk recurrence. Finally, both 

apixaban and rivaroxaban are approved for DVT prophylaxis as an alternative to LMWH 

in patients following hip or knee replacement surgery [81, 87, 92, 93]. 

Patients with prosthetic heart valves are at extremely high risk for stroke or systemic 

embolism, and these patients are routinely anticoagulated with warfarin. No data is 

available, however, on the efficacy of direct FXa inhibitors in this patient population. The 

only TSOAC for which there is clinical data is dabigatran, a direct thrombin inhibitor, but 

this study was terminated prematurely because of excessive stroke as well as bleeding in 

the dabigatran arm [99]. 
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Safety of Direct FXa Inhibitors 

Like most anticoagulants, the major safety concern with direct FXa inhibitors is 

bleeding, with special emphasis placed on intracranial hemorrhage and gastrointestinal 

bleeding. A Cochrane review of the safety endpoints from the atrial fibrillation studies 

concluded that direct FXa inhibitors have a favorable safety profile compared to warfarin 

in these patients [98]. Specifically, direct FXa inhibitors showed an impressive reduction 

in rates of intracranial hemorrhage (OR 0.56, 95% CI 0.45 to 0.70) compared to patients 

receiving warfarin. The analysis also revealed that major bleeding (as defined by the 

ISTH criteria [100]) was less frequent in patients taking direct FXa inhibitors, but that 

the improvement over warfarin was less pronounced than for intracranial hemorrhage 

(OR 0.90, 95% CI 0.82 to 0.98). In a similar meta analysis in patients undergoing 

treatment for acute DVT or PE, where standard treatment is a combination of LMWH 

and warfarin, anticoagulation with direct FXa inhibitors resulted in fewer major bleeding 

episodes (OR 0.57, 95% CI 0.43 to 0.76) [101]. No safety benefit was seen in the setting 

of postoperative anticoagulation in orthopedic patients, with a trend towards increased 

major bleeding compared to the LMWH standard therapy (OR 1.27, 95% CI 0.98 to 

1.65). 

Monitoring of Direct FXa Inhibitors 

One of the primary drawbacks to warfarin therapy is the need for routine INR 

monitoring [62, 63, 68]. This is especially important for due to the numerous food-drug 

interactions and substantial pharmacogenetic variation in warfarin metabolism [68]. 

Direct FXa inhibitors, on the other hand, do not appear to require regular coagulation 



www.manaraa.com

18 

 

monitoring in most patients [102-104]. Nonetheless, there are certain clinical scenarios 

where knowing the extent of anticoagulation may be beneficial. This is especially true of 

patients on pharmacokinetic extremes such as individuals with renal disease or obese 

patients [105, 106]. In addition, understanding the degree to which a bleeding patient is 

anticoagulated is critical if a pharmacologic reversal strategy is to be employed. 

In principle, direct FXa inhibitors should affect both PT and aPTT measurements 

because FXa lies in the common pathway. However, these assays are only sensitive to 

direct FXa inhibitors at higher concentrations, near the upper limits of the therapeutic 

range. Thus, they are not ideal for making precise determinations of anticoagulant effect. 

A more useful assay is the anti-Xa assay, which uses a chromogenic FXa substrate to 

determine the degree to which FXa is inhibited. It is sensitive to and, importantly, linear 

within, the therapeutic and supratherapeutic range of direct FXa inhibitors [106]. 

Therefore, this assay is probably the best choice for in vitro monitoring of the 

anticoagulant effects of direct FXa inhibitors. 

Reversal of Direct FXa Inhibitors 

Despite widespread enthusiasm surrounding clinical trial results and subsequent 

approval of TSOACs, concerns about the risk of bleeding still remain. This is particularly 

important because there are no FDA approved countermeasures to the anticoagulant 

effects of TSOACs in the event of bleeding or prior to an invasive procedure [107]. This is 

in contrast to warfarin, for which multiple reversal strategies exist [63]. Administration 

of vitamin K allows for sufficient γ-carboxylation of newly synthesized clotting factors 

and reversal of warfarin's anticoagulant effects within 4-24 hours, depending on the 
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degree of anticoagulation. If more rapid reversal is required, patients can be given fully 

carboxylated vitamin-K dependent factors, either in the form of fresh frozen plasma 

(FFP) or prothrombin complex concentrates (PCCs), which contain FIX, FX, 

prothrombin, and, depending on the preparation, FVII [108]. 

Given the many years of clinical experience with an agent like warfarin that has a specific 

reversal strategy, the lack of a reversal strategy for TSOACs has been the subject of much 

discussion. Some have argued that the short half-lives of TSOACs, which typically , in 

conjunction with a potentially lower risk of bleeding compared to warfarin, renders 

reversal agents unnecessary. Nevertheless, there are several reversal agents in various 

stages of development [107, 109]. 

Proposed reversal strategies for direct FXa inhibitors fall into one of three categories. A 

relatively straightforward approach is to remove the drug, either by preventing 

absorption or by active removal from circulation. A similar but distinct strategy is to 

sequester the anticoagulant and relieve inhibition of FXa using a specific, noncatalytic 

antidote. Finally, several groups have proposed bypassing the inhibitor using a pro-

hemostatic agent to generate thrombin without relieving inhibition of FXa. Of these 

three, specific antidotes and bypassing agents have received the most attention (Fig. 5). 

Drug Removal Approaches 

In the event of overdose, it has been suggested that activated charcoal might be effective 

at preventing absorption of the anticoagulant if administered shortly after ingestion. 

However, direct FXa inhibitors are rapidly absorbed and reach peak efficacy within 1-4 

hours. Thus, even if this approach were effective, it would only be useful during a narrow 
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window prior to drug absorption [109]. After absorption, removing the anticoagulant by 

hemodialysis is also not expected to be efficient due to the high degree of anticoagulant 

binding to plasma proteins [78-80]. Indeed, studies in anticoagulated patients 

undergoing hemodialysis support the idea that direct FXa inhibitors are effectively not 

dialyzable [78, 110]. Even edoxaban, which has the lowest plasma protein binding of the 

currently approved agents (~55%) [111] was only minimally cleared after 4 hours of 

hemodialysis [78]. Thus, removal of the anticoagulant or prevention of absorption is 

unlikely to be a widely used method of anticoagulant reversal. 

Anticoagulant-Sequestering Antidotes 

Generally speaking, drug-sequestering antidotes bind the anticoagulant and prevent it 

from inhibiting FXa. Such antidotes could theoretically take multiple forms including 

decoy enzymes, synthetic small molecules, DNA or RNA aptamers, or antibodies. Unlike 

bypassing agents, they typically have no intrinsic catalytic activity, and therefore, a 

substantial fraction of the anticoagulant must be bound to restore normal hemostasis 

[112, 113]. For this reason, antidotes are usually administered at much higher 

concentrations than bypassing agents to effectively deplete the anticoagulant. 

Of the possible antidote approaches, a monoclonal antibody (or antibody fragment) 

against each inhibitor would likely afford the greatest specificity. Indeed, in the direct 

thrombin inhibitor class of TSOACs, a Fab fragment that specifically binds the direct 

thrombin inhibitor dabigatran is currently being developed [114, 115]. However, an 

antibody-based approach has not yet been reported, possibly due to the fact that there 

are multiple drugs in the direct FXa inhibitor class and each drug would require its own 
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specific antibody. Instead, all antidotes currently under development appear to have 

broad specificity for the entire direct FXa inhibitor class, with some also targeting 

indirect FXa inhibitors [112, 113]. 

Gla-domainless FXaS[195]A  

Gla-domainless FXaS[195]A (GD-FXaS[195]A) is a recombinant variant of FXa that is being 

developed as a drug-sequestering antidote for direct FXa inhibitors [112]. It is 

conformationally similar to wt-FXa in its ability to bind active site probes, but its 

catalytic active site Ser[195] is mutated to an alanine to render the molecule catalytically 

inactive. It also lacks the membrane-binding Gla-domain, since FXaS[195]A would 

otherwise be able to assemble in prothrombinase and result in a dead-end complex. 

Thus, GD-FXaS[195]A binds direct FXa inhibitors with high affinity, sequestering the 

anticoagulant to relieve inhibition of prothrombinase. GD-FXaS[195]A has been shown to 

be highly effective at reversing the anticoagulant effects of rivaroxaban in rat and rabbit 

bleeding models. The 1:1 stoichiometry of GD-FXaS[195]A necessitates the use of high 

concentrations (high nanomolar) to effectively sequester the anticoagulant. This will 

likely mean that hundreds of milligrams of this recombinant protein will be needed to 

reverse anticoagulation in a single patient. 

Aripazine 

Aripazine is a small molecule derived from two arginine moieties attached to a 

piperazine core. It was designed using an in silico approach to non-covalently and 

specifically hydrogen bond not only to direct FXa inhibitors, but also direct thrombin 
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inhibitors and heparins [113]. It has been reported to reverse the anticoagulant effects of 

rivaroxaban, apixaban, edoxaban, and dabigatran in vitro [113] and in a rat tail 

transection model in vivo [116]. In an ongoing phase II study, aripazine was shown to 

restore ex vivo whole blood clotting time to baseline in healthy volunteers treated with a 

single 60 mg oral dose of edoxaban with no evidence of prothrombotic side effects [117]. 

Unfortunately, there is limited evidence surrounding the specificity of aripazine for its 

targets. Indeed, it is quite surprising that such a molecule could have high specificity for 

the diverse molecules in the direct FXa class, and even more unclear how it also has 

specificity for direct thrombin inhibitors and heparin, but nothing else. While such 

properties are certainly plausible, much more preclinical evidence is needed to assess 

this. This is particularly true in light of a study directly comparing GD-FXaS[195]A and 

aripazine in vitro in a purified system which indicated that aripazine may enhance FIXa 

activation of FX [118]. 

Pro-Hemostatic Bypassing Agents 

Biochemical Requirements 

Bypassing agents have been used for many years to prevent and treat bleeding in 

hemophilia patients with inhibitory alloantibodies [119]. In hemophilia, deficiency of 

factor VIII or FIX results in insufficient activation of FXa [119], so enhancing the activity 

of the other FXa-generating pathway, the extrinsic pathway, is a logical therapeutic 

approach. Bypassing the effects of direct FXa inhibitors is much more problematic. FXa 

is the last step in the coagulation cascade before prothrombin. Since there is no 
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intervening protease between the FXa and prothrombin, the only way to enhance 

prothrombin activation would be to somehow modulate FXa's activity. However, doing 

so by increasing the amount of FXa present (either by direct administration of FXa or by 

enhancing its upstream activation) has seemed illogical since the anticoagulant has high 

affinity for the enzyme [71, 72, 120] and is in vast excess [121]. Nonetheless, there have 

been several studies exploring the repurposing of hemophilia bypassing agents and 

warfarin reversal agents for direct FXa inhibitor reversal. 

Prothrombin Complex Concentrates 

PCCs are a heterogeneous group of plasma-derived products that were originally 

developed to treat severe FIX deficiency (hemophilia B) before purified FIX was 

available [122]. It is now typically used for warfarin reversal, especially in volume-

sensitive patients, and are also used to treat patients with rare vitamin K-dependent 

factor deficiencies.  There are 3-factor and 4-factor forms, with both containing FIX, FX, 

and prothrombin, but with 4-factor PCCs also containing FVII [122]. Most preparations 

also contain PC and protein S [108]. Their dosage is normalized to FIX concentration, 

and can vary in the concentration of the other factors [122]. In a small study of healthy 

volunteers given 20 mg rivaroxaban twice daily for 2.5 days, 4-factor PCC administration 

corrected the mildly prolonged PT, and overcorrected the endogenous thrombin 

potential (ETP) in thrombin generation (TG) studies [123]. Two other studies reported a 

similar improvement in ETP following ex vivo addition of PCC to blood from 

rivaroxaban-treated individuals [124, 125]. However, the effect of PCC on peak height in 

these TG studies was mixed, with only one of the studies reporting correction of peak 

height [124]. 
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Animal injury studies have also yielded variable results with respect to the efficacy of 

PCC as a rivaroxaban reversal agent. At high doses, PCC (50 U/kg) normalized bleeding 

time in a rat mesenteric artery bleeding model [126]. When evaluated in a rabbit ear 

immersion bleeding assay, however, PCC had no effect on bleeding time and blood loss 

[127]. In a recent study in humans using a punch biopsy model in healthy volunteers 

given a single 60 mg dose of edoxaban, 50 U/kg of a 4-factor PCC reversed edoxaban's 

effect on bleeding duration after injury as well as the ETP parameter in ex vivo TG 

studies [128]. No effect was seen on, however, on bleeding volume in these subjects. 

There was also a great deal of variability within the control groups in this study, 

suggesting that the injury may not have been sensitive enough to the effects of the 

anticoagulant to reliably see large differences in bleeding. 

The results from these PCC studies are difficult to interpret, in part, because the 

products used vary greatly. Most studies used 4-factor PCCs, but each preparation varies 

in terms of its exact composition. In addition, studies that measured TG parameters 

almost universally showed improvement in the ETP, but were less consistent with 

respect to other parameters [123-125]. This might reflect a dependence of the ETP on 

prothrombin levels, which are increased during PCC therapy, and which have been 

shown to correlate well with an improvement in ETP in other settings (i.e. hemophilia) 

[129]. 

Recombinant FVIIa 

Recombinant FVIIa concentrate (rFVIIa) is a widely used bypassing agent for 

hemophilia patients with inhibitors to enhance generation of FXa through the extrinsic 



www.manaraa.com

25 

 

pathway [119]. rFVIIa added to plasma obtained from patients anticoagulated with 

rivaroxaban normalized only the lag time parameter in TG experiments, with little to no 

effect on peak height or ETP [124]. rFVIIa also corrected the rivaroxaban-prolonged PT 

in this study and partially corrected the PT in animal studies in rats and baboons [126]. 

rFVIIa also partially normalized bleeding time in a rat mesenteric artery bleeding model, 

but did not statistically significantly reduce bleeding time in a skin bleeding model in 

baboons [126]. Like PCCs, rFVIIa also had no effect on ear bleeding in rivaroxaban-

treated rabbits [127]. 

Activated Prothrombin Complex Concentrates 

Activated prothrombin concentrates (aPCCs) are a plasma-derived product used, like 

rFVIIa, to treat bleeding in hemophilia patients with inhibitors [119]. Despite their 

name, aPCCs only contain a significant concentration of one activated factor, FVIIa [130, 

131]. The other components are zymogens FIX, FX, and prothrombin, with very little 

FIXa, FXa, or thrombin present. The mechanism of action of aPCCs has not been fully 

elucidated, although some studies have suggested that the prothrombin present in the 

product is critical to its function [132-134]. 

Unlike rFVIIa and PCCs, aPCCs corrected all aspects of TG profiles, including lag time, 

peak height, and ETP, when added to plasma from rivaroxaban-treated individuals ex 

vivo [124]. High dose aPCCs also partially corrected the rivaroxaban-induced increased 

bleeding time in the rat mesenteric artery bleeding model, and, in contrast to rFVIIa, 

also completely normalized the skin bleeding time in baboons [126]. aPCCs also partially 

normalized bleeding time in edoxaban-treated rats [135]. 
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Summary 

Blood coagulation is responsible for maintenance of vascular integrity, and therefore 

plays a significant role in human health. For this reason, there is a great deal of interest 

in selective pharmacologic modulation of hemostasis to prevent or treat bleeding or 

thrombosis. The serine proteases of coagulation are an attractive target for such 

interventions, since they are essential to clot formation and since they are "druggable" 

enzymes. Historically, antagonizing an enzyme via an active site-directed ligand has been 

quite appealing since such probes tend to be specific to their targets and prevent 

formation of the enzymatic product. However, the enzymatic function of coagulation 

serine proteases is highly complex. In addition to catalyzing substrate hydrolysis, these 

enzymes are also subject to irreversible active site dependent inhibition by plasma 

protease inhibitors. This regulatory mechanism is critical to the prevention of 

thrombosis, and it is unclear how it might be affected by pharmacologic active site 

antagonism. 

Nonetheless, several new molecules that directly inhibit the active site of FXa have been 

developed for oral anticoagulation. While they are clearly effective at prevention of 

thrombosis, they also increase the risk of bleeding. Although they may represent a 

substantial improvement in oral anticoagulant therapy compared to warfarin, there is 

concern about the lack of an approved antidote or countermeasure to the effects of direct 

FXa inhibitors. 

This dissertation begins with the observation that FXa can reverse the anticoagulant 

effects of direct FXa inhibitors (Chapter 2). To understand this unexpected finding, we 
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explore the kinetic consequences of active site antagonism of FXa (Chapter 3), with a 

special emphasis on the effect of these anticoagulants on plasma protease inhibitors of 

FXa. Through this work, we demonstrate that inhibition of FXa can paradoxically lead to 

increased levels of uninhibited FXa. This remarkable increase in FXa may have 

implications for the development of FXa inhibitor reversal agents, on the clinical efficacy 

of FXa inhibitors, and possibly on the safety of these new oral anticoagulants. 
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Figure Legends 

Figure 1. The coagulation cascade. The coagulation cascade of serine proteases and 

cofactors is shown, culminating in generation of thrombin, the effector protease of 

coagulation. Image courtesy of Dr. Sriram Krishnaswamy. 

Figure 2. Catalytic mechanism of chymotrypsin-like serine proteases. The 

catalytic triad consisting of Asp[102], His[57], and Ser[195] in the chymotrypsin numbering 

system. A representative peptide is shown, with the first residue amino-terminal to the 

scissile bond denoted with P1, and the first residue on the carboxy-terminal end of the 

scissile bond denoted with P1
'. The two acyl substitution reactions are shown. Each 

substitution step has a nucleophilic attack step, with the nucleophilicity enhanced by 

His[57], which generates a tetrahedral oxyanionic intermediate, followed by leaving of the 

leaving group and restoration of the planar carbonyl. The oxyanion hole is not shown. 

Figure 3. Crystal structure of FXa. The heavy chain of FXa which contains the 

catalytic domain of the protease is shown in the standard orientation. The catalytic triad 

is shown as red sticks. Ile[16] and Asp[194] which form an internal salt bridge are also 

shown. DX-9065a, a bound inhibitor, is in pink. The activation domain is labeled green 

and a proposed FVa binding site, the "162 helix," is shown in orange. The calcium loop is 

in light purple and the yellow region is an acidic exosite corresponding to exosite 1 in 

thrombin. The light chain is not shown, but would be directly behind the heavy chain in 

this orientation [24]. 

Figure 4. Zymogen-like FXa variants. In wt-FXa, the protease conformation is 

favored because amino-terminal insertion (H2N-IVGG-) stabilizes the protease. 
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Mutations in the conserved amino-terminus disrupt insertion and alter the equilibrium 

position, making a more zymogen-like variant. FVa binds the protease conformation of 

FXa much more tightly than the zymogen-like state, so saturating amounts of FVa in the 

presence of membranes can rescue activity of zymogen-like FXa. 

Figure 5. General strategies for reversal of direct FXa inhibitors. The 

prothrombinase complex, made up of FXa and FVa on an acidic phospholipid 

membrane, is shown, subject to inhibition by a direct, active site inhibitor (gray circles, 

"In"). A drug-sequestering antidote (bottom left, large red circles, "antidote") binds the 

anticoagulant to relieve inhibition of the target enzyme. A bypassing agent does not 

relieve inhibition of the target enzyme, and instead, generates the product in spite of the 

inhibitor. 
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Figure 2 
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Figure 3  



www.manaraa.com

33 

 

Figure 4
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Figure 5 
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Abstract 

The pharmacokinetic challenges of warfarin therapy have led to the development of 

target-specific oral anticoagulants (TSOACs) that directly inhibit coagulation factor Xa 

(FXa). While these new drugs have many benefits over warfarin, no approved strategy 

exists to reverse their anticoagulant effects in the event of life-threatening bleeding or 

emergent need for surgery. We hypothesized that a pro-hemostatic bypassing agent 

might be able to reverse the effects of direct FXa inhibitors with high potency. To 

evaluate this, we used a variant of FXa (FXaI[16]L) that is more zymogen-like than wild-

type (wt)-FXa. This variant is resistant to active site inhibitors and has a long plasma 

half-life, but is catalytically active in vivo at the site of vascular injury. In vitro, FXaI[16]L 

dose-dependently restored thrombin generation in the face of the direct FXa inhibitor 

rivaroxaban. FXaI[16]L also reversed the effects of rivaroxaban in both a large vessel and a 

microcirculatory injury model in mice. Importantly, FXaI[16]L was more potent (>50-fold) 

in these models than a noncatalytic antidote in clinical development. These data 

highlight that differences in mechanism of action between a pro-hemostatic bypassing 

agent and a noncatalytic antidote will have a huge impact on amounts of protein needed 

to revive thrombin generation. Furthermore, these data provide strong support for the in 

vivo efficacy and potency of FXaI[16]L as a potential pro-hemostatic bypass agent to 

reverse direct FXa inhibitors. 
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Introduction 

Clot formation is a homeostatic mechanism that prevents blood loss following vascular 

injury. Its dysregulation can lead to the pathological activation of coagulation and 

thrombosis. Pharmacologic oral anticoagulation by warfarin is a mainstay of care for 

thrombosis and has been in clinical use for over six decades[63].  However, limitations of 

warfarin therapy have prompted the development of target-specific oral anticoagulants 

(TSOACs)[63, 136].  These small molecules reversibly bind the active site of coagulation 

factor Xa (FXa)[70-72] or thrombin[69] and inhibit protease function. Clinically, 

TSOACs are as or more effective than warfarin and are approved in Europe and the 

United States for stroke prevention in patients with atrial fibrillation, and for 

thromboprophylaxis following orthopedic surgery[87, 94-96, 137]. However, like 

warfarin, there is a clinically significant risk of bleeding[102, 103]. Bleeding 

complications with warfarin are managed by anticoagulant reversal with vitamin K, fresh 

frozen plasma, or prothrombin complex concentrates (PCCs)[63].  In contrast, TSOACs 

lack clinically approved countermeasures[107].   

Proposed reversal strategies for direct FXa inhibitors fall into two categories: antidotes 

that bind and sequester the inhibitor[112, 117], or bypassing approaches that enhance 

thrombin formation and hemostasis in the face of the inhibitor[123, 124, 126, 127, 138].  

An example of the former is a catalytically inactive recombinant FXa variant lacking the 

membrane-binding 4-carboxyglutamic acid domain (GD-FXaS[195]A; Andexanet alfa, 

Portola Pharmaceuticals) currently in Phase III clinical trials[112]. This variant cannot 

contribute directly to thrombin formation as it lacks catalytic activity and does not bind 

membranes, precluding it from assembling in the prothrombinase complex. However, 
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because it retains binding interactions at the active site, it specifically depletes FXa 

inhibitors in blood. Indeed, experiments in rabbits and rats support GD-FXaS[195]A as a 

pre-injury reversal agent[112, 139].  However, because of its mechanism of action, 

hundreds of milligrams of GD-FXaS[195]A are required for a therapeutic effect[140].  

Moreover, at these high concentrations, GD-FXaS[195]A is expected to bind and deplete the 

endogenous serine protease inhibitor antithrombin III (ATIII)[112] and tissue factor 

pathway inhibitor (TFPI), both essential for the negative regulation of coagulation[141, 

142]. Since these two natural inhibitors are protective against thrombosis, their 

depletion could paradoxically increase thrombotic risk, especially in hypercoagulable 

patients. Consequently, a procoagulant hemostatic agent that is effective at catalytic 

concentrations may be a better choice to stop bleeding induced by FXa inhibitors.   

Existing bypassing agents developed for hemophilia treatment (e.g. PCCs, activated 

prothrombin complex concentrates (aPCCs), and recombinant factor VIIa (rFVIIa)), are 

being evaluated for reversal of direct FXa inhibitors with mixed results[123, 126, 127]. 

Here we tested a bypassing strategy based on a FXa variant developed in our group[44, 

59, 60]. The substitution of isoleucine at position 16 (numbered after 

chymotrypsinogen[23]) with leucine to yield FXaI[16]L results in an impaired 

conformational transition from zymogen to protease and yields a zymogen-like FXa 

species. Zymogen-like variants like FXaI[16]L have impaired active site function and are 

thus resistant to active site inhibitors and have longer plasma half-lives than wild-type 

(wt)-FXa.  Notably, their impaired activity is rescued upon binding the cofactor, FVa, on 

membranes to form the prothrombinase complex. These properties allow zymogen-like 

FXa variants to effectively bypass the clotting defect in hemophilic mice without 

increasing risk for thrombosis or consumptive coagulopathy[60]. We hypothesized these 
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features would also enable them to avoid inhibition and restore hemostasis in the 

presence of direct FXa inhibitors. In this study, we demonstrate that FXaI[16]L is an 

effective bypassing agent to counteract direct FXa inhibitors in vitro and in vivo using 

established mouse hemostasis models. 

Methods 

Reagents.  Z-Gly-Gly-Arg-AMC was from Bachem Bioscience Inc. Technothrombin 

thrombin calibrator and reagent RB were from Diapharma Group Inc. Pooled normal 

human plasma (NHP) was obtained from George King Biomedical, Inc. Rivaroxaban was 

from Selleck Chemicals. All tissue culture reagents were from Invitrogen except insulin-

transferrin-sodium selenite, which was from Roche. Ferric chloride (FeCl3) was from 

Sigma-Aldrich. Corn trypsin inhibitor (CTI) was from Haematologic Technologies. 

Activated prothrombin complex concentrates (aPCCs, FEIBA NF) were purchased from 

Baxter International, Inc. Innovin was from Dade Behring. Rat anti-mouse CD41 

antibody prepared as a F(ab)2 fragment was from BD Bioscience. Mouse anti-human fibrin 

monoclonal antibody (clone 59D8), which cross-reacts with mouse fibrin, has been 

previously described[143, 144]. These antibodies were conjugated with Alexa555 or 

Alexa488 using the Alexa Fluor Protein Labeling Kit according to the manufacturer's 

instructions (Molecular Probes/Invitrogen).  

Proteins. The FX activator from Russell's viper venom, RVVX-CP was purified as 

previously described[145]. Recombinant hFXI[16]L and mFXI[16]L were expressed in human 

embryonic kidney 293 (HEK293) cells, purified from media, and activated using RVVX-CP 

as previously described[146, 147]. hFXS[195]A was expressed in HEK293 cells and purified 
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from the media using a protocol identical to that used for hFXI[16]L. hFXS[195]A was then 

activated to hFXaS[195]A with RVVX-CP and purified in the same way as the other 

recombinant FXa molecules. To generate GD-FXaS[195]A, hFXaS[195]A was digested with 

chymotrypsin as previously described[148] and purified using a Poros HQ/20 column, 

eluting with a NaCl gradient in 20 mM Tris, pH 8.3, then dialyzing against 20 mM 

HEPES, 150 mM NaCl, pH 7.4. 

Mice. Wild-type (wt) male C57BL/6J mice purchased from Jackson Laboratory were 

used in all experiments. For ex vivo ROTEM studies and all ferric chloride carotid artery 

injury experiments, blood was collected from 8-10-week-old mice weighing 20-30 g. For 

intravital imaging studies, mice were 11-12 weeks old and weighed 25-35 g. Experimental 

approval was obtained from the Children's Hospital of Philadelphia Institutional Animal 

Care and Use Committee. 

Clotting Assays. One µM rivaroxaban was incubated in NHP along with various 

concentrations of GD-FXaS[195]A for 30 minutes at room temperature[112]. After 

incubation, 50 µL of each plasma sample was incubated at 37°C for 60 s. Coagulation 

was then initiated by addition of 100 µL of Innovin, and time to clot formation was 

measured with a Start4 coagulation machine (Diagnostica Stago). 

Thrombin Generation Assays. Thrombin generation assays (TGA) in NHP were 

performed as previously described[59] with a slight modification to accommodate the 

addition of rivaroxaban and reversal agents as appropriate. 40 µL NHP was added to a 

microtiter plate (Nunc; F16 black Maxisorp) along with 10 µL Technothrombin RB (2 pM 

TF, 4.0 µM phospholipid). 3 µL rivaroxaban dissolved in 20 mM HEPES, 150 mM NaCl, 

0.1% PEG-8000, pH 7.4 (HBS-PEG) was added to NHP in a black microtiter plate 
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(Nunc; F16 black Maxisorp) along with the 2 µL of reversal agent (hFXaI[16]L, GD-

FXaS[195]A, or aPCCs). The reaction was initiated immediately by adding Z-Gly-Gly-Arg-

AMC in 15 mM CaCl2 (50 µL; 0.5 mM final). Fluorescence (λex=360 nm, λem=460 nm) 

was measured at one minute intervals for 90 minutes at 37°C using a Spectramax M2e 

(Molecular Devices) plate reader. The Technothrombin calibrator kit was used to convert 

raw fluorescence intensity to thrombin concentration. Thrombograms (nM thrombin vs. 

time) were made to determine the lag time, peak height, and endogenous thrombin 

potential (ETP). 

Rotational Thromboelastography (ROTEM). The institutional review board of the 

Children's Hospital of Philadelphia Research Institute approved the human phlebotomy 

and blood use performed in this study. Informed consent was obtained from all subjects. 

For human studies, whole blood from 5 healthy donors was collected into CTI (final 

concentration 25 µg/mL) and one-tenth volume of 3.2% sodium citrate. 300 µL of blood 

was added to a pre-warmed (37°C) ROTEM cup along with rivaroxaban and hFXaI[16]L at 

the indicated concentrations. The reaction was initiated with 11.8 mM CaCl2 and a 

1:17,300 dilution of innovin. Data was exported using the manufacturer's export tool and 

plotted as time versus elasticity. The clot time (CT) was determined as the time to reach 

an amplitude of 2 mm of elasticity. 

For murine ex vivo ROTEM studies, rivaroxaban was formulated for intravenous 

injection using a mixture of polyethylene glycol 400, H2O, and glycerol (968g, 590 g, and 

58 g, respectively) that was a modification to a previously reported protocol[149]. The 

DMSO stock of rivaroxaban was diluted in the injection solution to a concentration of 

0.25 mg/mL such that the DMSO concentration in the final solution was 0.5%. 
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Rivaroxaban was infused via the lateral tail vein prior to anesthetizing the mouse 

(pentobarbital, intraperitoneal injection). The right jugular vein and infrahepatic inferior 

vena cava (IVC) were exposed. Proteins (mFXaI[16]L or GD-FXaS[195]A) diluted in HBS-PEG 

were infused directly into the jugular vein using a needle crossing the pectoral muscle 

getting into the jugular vein. One minute after protein infusion, blood (400 µL final 

volume including anticoagulants) was withdrawn from the infrahepatic IVC using a 22G 

needle pre-loaded with one-tenth volume 3.2% sodium citrate and CTI (100 µg/mL 

final). The blood samples were analyzed by ROTEM as described above. 

Ferric Chloride Carotid Artery Injury Model. Ferric chloride-induced carotid 

artery injury was performed with minor modifications to previously established 

protocols[60]. Rivaroxaban or vehicle was infused via lateral tail vein injection using the 

same protocol used in the ex vivo studies described above. After anesthesia with 

intraperitoneal pentobarbital, the right jugular vein was exposed to allow for direct 

jugular vein injection of proteins. The right common carotid artery from the sternal 

origin of the sternocleidomastoid muscle to the carotid bifurcation was exposed. Baseline 

carotid blood flow was recorded with a miniature Doppler flow probe (Model 0.5PSB; 

Transonic Systems) positioned around the carotid artery. A 2 mm x 1 mm piece of 

Whatman #1 filter paper soaked in 7.5% FeCl3 (0.46 M) was applied to the adventitial 

surface of the artery for 2 minutes. The paper was then removed, the area flushed with 

PBS, and blood flow monitored continuously for 30 minutes. Time to complete occlusion 

was defined as the time from the end of the injury period to the time when blood flow 

had decreased by >90% of the baseline level for at least 5 continuous minutes. After the 

30 minute monitoring period, reversal of rivaroxaban was attempted by infusing protein 

(mFXaI[16]L or GD-FXaS[195]A) or vehicle via direct jugular vein injection. Following 
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protein injection, blood flow was monitored for an additional 30 minutes, and time to 

complete occlusion was recorded as the time between protein infusion and the beginning 

of a 5-minute-sustained occlusive event as defined above. In some experiments, protein 

was injected via direct jugular vein injection 1 minute prior to FeCl3 injury. In all 

experiments, complete occlusion was verified at the site of the injury by visually 

observing an opaque clot. 

Intravital Imaging of Thrombus Formation. Evaluation of hemostasis following 

laser injury to mouse cremasteric arterioles has been previously described[150] and our 

specific experimental system has been detailed[60, 151-153]. Rivaroxaban and proteins 

were formulated as described for ex vivo ROTEM experiments and FeCl3 injury 

experiments, but were injected via jugular vein cannulus instead of the tail vein. After 

allowing rivaroxaban to distribute for 5 minutes, Alexa555-labled rat anti- CD41 F(ab)2 and 

Alexa488-labeled anti-fibrin antibodies to detect platelets and fibrin, respectively, were 

infused and laser-injury was performed to the vessel wall of the cremasteric arterioles. In 

some experiments, rivaroxaban-treated mice were infused with the reversal agent (either 

mFXaI[16]L or GD-FXaS[195]A, dissolved to the appropriate concentration in 20 mM 

HEPES, 150 mM NaCl, pH 7.4). Cremasteric arterioles of 30-50 µm were injured using a 

pulse-nitrogen dye laser applied through the microscope objective. Brightfield and 

fluorescence images were collected over 3-4 minutes at 4 frames/second and the data 

were analyzed with Slidebook 6 software (Intelligent Imaging Innovations). The kinetics 

of clot formation were analyzed by determining median fluorescence intensity over time 

in ~14-22 thrombi from three animals/group. For the 50 mg/kg GD-FXaS[195]A group, one 

animal was used and 5 injuries were made. 
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Results 

FXaI[16]L reverses FXa inhibitors in vitro: Standard clinical clotting assays are not 

particularly sensitive to the effects of direct FXa inhibitors[154, 155].  Instead, we used 

thrombin generation assays (TGA) to determine if FXaI[16]L could mitigate the effects of 

rivaroxaban in normal human plasma (NHP). Rivaroxaban, within the therapeutically 

useful range (170-830 nM)[121], dose-dependently inhibited thrombin generation in 

NHP (Fig. 1a-b), reducing peak thrombin levels (Fig. 1b). At a fixed concentration of 

rivaroxaban (500 nM), FXaI[16]L improved peak thrombin generation with full 

normalization achieved at 3 nM FXaI[16]L (Fig. 1c). Even in the presence of 2.5 µM 

rivaroxaban to simulate over-anticoagulation, FXaI[16]L increased peak thrombin 

generation to near-normal levels (Fig. 1d). Similar results were obtained with apixaban, 

another direct FXa inhibitor (Supplementary Fig. 1).  We also studied the effects of 

rivaroxaban and FXaI[16]L in whole blood from normal human donors using rotational 

thromboelastography (ROTEM) to evaluate whether additional blood components 

influence the results.  Rivaroxaban prolonged the time to initial clot formation (CT) 

when added at therapeutic (Supplementary Fig. 2a-b) and supratherapeutic 

(Supplementary Fig. 2c-d) concentrations. The addition of FXaI[16]L (0.3 or 3 nM) 

improved the ROTEM profile in rivaroxaban-treated blood.  Whether assessed in plasma 

or whole blood, these results illustrate the effectiveness of FXaI[16]L in counteracting 

direct FXa inhibitors. 

To compare the relative in vitro efficacy and potency of FXaI[16]L to other reversal 

strategies, we expressed and purified GD-FXaS[195]A.  Characterization of GD-FXaS[195]A 

revealed that our preparation was comparable to those used in previous reports[112] 
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(Supplementary Fig. 3). Titration of GD-FXaS[195]A into NHP anticoagulated with 

rivaroxaban (500 nM (Fig. 1e) or 2.5 µM (Supplementary Fig. 4)) confirmed it 

completely restores thrombin generation when present at concentrations equal to or 

higher than the inhibitor. However, compared to FXaI[16]L, GD-FXaS[195]A was 

approximately 300-fold less potent (Fig. 1f). We also evaluated aPCCs as reversal 

agents, but they did not substantially restore thrombin generation (Supplementary 

Fig. 5). 

FXaI[16]L restores hemostasis in anticoagulated mice:  For these studies, we 

expressed and purified mouse-(m)FXaI[16]L to avoid the possibility of inter-species 

incompatibility[60] and employed ex vivo ROTEM to determine the dosing range. 

Rivaroxaban (1 mg/kg) substantially increased the ROTEM CT compared to controls, 

and addition of mFXaI[16]L (1 mg/kg) normalized all parameters (Fig. 2a). As expected, 

GD-FXaS[195]A was mostly ineffective at 5 mg/kg and a much higher dose (25 mg/kg) was 

needed to normalize the CT. 

To extend the work in vivo, we employed the FeCl3 carotid arterial thrombosis model[60, 

156] (Fig. 2b-f and Supplementary Fig. 6). Rivaroxaban (0.5 mg/kg) prolonged the 

time to occlusion, and a higher dose (1 mg/kg) prevented carotid artery occlusion (Fig. 

2b). Administration of mFXaI[16]L (0.25 mg/kg or 1 mg/kg) 30 minutes after injury (Fig. 

2c) rapidly restored occlusion (Fig. 2d). This experimental design was advantageous 

because both the anticoagulant effects of rivaroxaban and the pro-hemostatic effects of 

mFXaI[16]L could be observed in the same animal. The mean time to occlusion with 

mFXaI[16]L was faster than untreated controls, consistent with the fact that mFXaI[16]L 

generates thrombin by bypassing the intrinsic and extrinsic pathways. Surprisingly, 
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administration of GD-FXaS[195]A  (25 mg/kg) did not restore clot formation (Fig. 2d), 

suggesting that it might not be as effective when administered after an injury has 

occurred.  As a control, 30 minutes after administration of GD-FXaS[195]A, infusion of 

mFXaI[16]L (1 mg/kg) led to occlusion at the site of injury (data not shown), confirming 

the injury was sufficient to produce carotid thrombosis. 

Reversal of anticoagulation is sometimes necessary before invasive procedures. To test 

the effects of mFXaI[16]L in such a scenario, rivaroxaban-treated mice were injected with 

mFXaI[16]L 1 minute prior to FeCl3 injury (Fig. 2e). Administration of mFXaI[16]L (0.5 

mg/kg) resulted in complete occlusion of the carotid artery (Fig. 2f) with occlusion 

times comparable to those of controls. GD-FXaS[195]A also restored vascular occlusion in 

this model at the dose (25 mg/kg) predicted by ex vivo experiments while a lower dose (5 

mg/kg) was ineffective. Together, these results indicate that FXaI[16]L is a potent 

hemostatic agent for rivaroxaban and suggest that it could be effective to prevent 

bleeding as well as to stop a bleeding episode that has already begun. 

To further evaluate this reversal strategy in vivo, we employed a microcirculatory model 

of hemostasis following laser injury to mouse cremasteric arterioles[60, 156]. Compared 

to wild-type mice, infusion of rivaroxaban (1 mg/kg) prior to vessel injury prevented 

fibrin deposition and considerably decreased platelet accumulation at the site of laser 

injury (Fig. 3). Infusion of 25 or 50 mg/kg GD-FXaS[195]A into rivaroxaban-treated mice 

resulted in a small but dose-dependent increase in platelets and fibrin (Fig. 3a-c). In 

contrast, a much lower dose of mFXaI[16]L (1 mg/kg) following rivaroxaban 

administration produced a greater increase in both platelet and fibrin accumulation 

(Fig. 3a-c). Together with the FeCl3 injury data, this indicates that FXaI[16]L can restore 
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thrombin generation in vivo in diverse vascular beds. 

Discussion 

Development of an effective reversal strategy for direct FXa inhibitors is imperative as 

their use becomes more widespread. In this study, we tested a bypassing approach for 

oral FXa anticoagulants with a zymogen-like variant of FXa. Administration of FXaI[16]L 

reversed the effects of rivaroxaban in vivo in both a mouse microcirculatory injury model 

as well as in a large vessel thrombosis model. Notably, FXaI[16]L was >50-fold more 

potent than GD-FXaS[195]A, an antidote that sequesters rivaroxaban by molecular 

engagement. The higher potency of FXaI[16]L indicated that its mechanism of action must 

be distinct from that of GD-FXaS[195]A. 

FXaI[16]L has numerous features that make it an attractive agent for alleviating the 

anticoagulant effects of rivaroxaban. In vivo characterization of FXaI[16]L revealed that it 

is substantially more potent and possibly more effective than antidote approaches. Its 

high potency is advantageous because low quantities of the protein can be used. From a 

safety perspective, catalytic amounts of FXaI[16]L are unlikely to deplete ATIII or other 

endogenous protease inhibitors. Further, even though both FXaI[16]L and GD-FXaS[195]A 

are variants of FXa and immunogenic risk cannot be ruled out without empirical human 

data, lower doses of FXaI[16]L may decrease its likelihood. Finally, since FXaI[16]L is 

dependent on FVa to rescue its protease activity, this may localize its activity to the site 

of vascular injury, possibly decreasing its thrombogenic potential. 

When infused after injury, GD-FXaS[195]A did not restore carotid artery occlusion in the 

FeCl3 model. These results are somewhat surprising since administration of GD-
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FXaS[195]A should render the animal hemostatically normal. This may indicate that 

although a scavenging antidote alone is sufficient to sequester the anticoagulant, it may 

not be as effective at stopping a bleeding episode that has already ensued. This could also 

mean that small molecule antidotes, such as PER977[117, 139], which directly binds FXa 

inhibitors, may only be useful in certain clinical situations. Our findings also raise 

concerns that similar antidote approaches for direct thrombin inhibitors (i.e. the Fab 

antidote for dabigatran[115]) may suffer the same limitations. Most importantly, these 

results underscore the need for empiric efficacy data in clinical trials. 

The mechanism by which FXaI[16]L reverses the effects of rivaroxaban is somewhat less 

clear. While FXaI[16]L is certainly an effective pro-hemostatic agent, it is not apparent how 

susceptible it is to inhibition by direct FXa inhibitors. The extensive literature 

surrounding zymogen-like FXa variants has shown that they are less inhibited by active 

site probes than wt-FXa when free in solution but comparable to wt-FXa when 

assembled in prothrombinase. Thus, it is plausible that, despite their zymogenicity and 

possible resistance to rivaroxaban when free in solution, FXaI[16]L may be just as 

inhibited as endogenous FXa at the site of vascular injury. If this is the case, ability of 

FXaI[16]L to reverse rivaroxaban might have a more complex and nuanced mechanism. 

In conclusion, we demonstrate the efficacy of FXaI[16]L as a procoagulant-bypassing agent 

for direct FXa inhibitors. Through comparisons of FXaI[16]L with a potential antidote we 

gained insight into the fundamental efficacy and potency differences between antidotes 

and bypassing strategies for direct FXa inhibitors. Perhaps most importantly, we now 

have a better understanding of the challenges remaining to address the urgent unmet 

clinical need for a reversal agent for direct FXa inhibitors. 
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Figure Legends 

Figure 1. Effect of FXaI[16]L or GD-FXaS195A on thrombin generation in 

rivaroxaban-treated plasma. (a) Representative thrombin generation tracing in 

platelet poor normal human plasma (NHP) with different rivaroxaban concentrations 

(black, 0; red, 200 nM; blue, 400 nM; cyan, 800 nM). (b) Peak thrombin generation at 

different rivaroxaban concentrations as a percentage of NHP. (c, d) Normalized peak 

thrombin generation was measured after FXaI[16]L was titrated into NHP supplemented 

with (c) 500 nM or (d) 2.5 µM rivaroxaban. (e) Peak thrombin generation following GD-

FXaS195A titration into NHP containing 500 nM rivaroxaban. (f) Peak thrombin 

generation in the presence of 500 nM rivaroxaban and FXaI[16]L (blue) or GD-FXaS195A 

(red) plotted on a logarithmic scale. All experiments in panels b-f were performed in 

quadruplicate, and all measurements are shown as mean ± SD. 

 

Figure 2. Reversal of rivaroxaban by FXaI[16]L or GD-FXaS195A in 

anticoagulated mice. (a) ROTEM clot times (CT) after administration of 1 mg/kg 

rivaroxaban (riva) and mFXaI[16]L or GD-FXaS195A to hemostatically normal C57BL/6 

mice. (b) Effect of rivaroxaban dose on time to complete occlusion of the mouse carotid 

artery following FeCl3 injury. Blood flow was monitored for 30 minutes after the injury. 

(c, d) 30 minutes after FeCl3 injury, animals treated with 1 mg/kg rivaroxaban were 

injected with either mFXaI[16]L or GD-FXaS195A and time to carotid occlusion was 

measured for another 30 minutes. (e, f) animals treated with 1 mg/kg rivaroxaban were 

infused with mFXaI[16]L or GD-FXaS195A prior to FeCl3 injury and carotid artery occlusion 

times were measured.  In all plots, horizontal black lines represent the mean for each 
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group. 

Figure 3. Reversal of rivaroxaban by FXaI[16]L or GD-FXaS195A in a laser injury 

model. (a) Digital composite fluorescence and brightfield images of representative 

thrombi in WT mice treated with either vehicle and HBS, rivaroxaban (1 mg/kg) and 

HBS, rivaroxaban (1 mg/kg) and GD-FXaS195A (50 mg/kg), or rivaroxaban (1 mg/kg) and 

mFXaI[16]L (1 mg/kg) before (0 s) and 30, 90, and 150 s after laser-induced injury of the 

cremasteric blood vessel wall. Platelets (red) were detected by an Alexa555-labled rat anti-

CD41 F(ab)2 and fibrin (green) with Alexa488-labled anti-fibrin antibody; areas of overlap 

are yellow. (b, c) Platelet and fibrin accumulation was quantified over time following 

laser injury in vehicle + HBS-treated mice (black; 3 mice, 22 injuries), rivaroxaban + 

HBS-treated mice (green; 3 mice, 15 injuries), rivaroxaban + 25 mg/kg GD-FXaS195A-

treated mice (purple; 3 mice, 14 injuries), rivaroxaban + 50 mg/kg GD-FXaS195A-treated 

mice (dark red; 1 mouse, 5 injuries), and rivaroxaban + 1 mg/kg mFXaS195A (blue; 3 mice, 

15 injuries). Median fluorescence intensity (MFI) for (b) platelet and (c) fibrin 

fluorescence are plotted versus time. 
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Figures 

Figure 1 
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Figure 1 (cont.) 
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Figure 1 (cont.) 
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Figure 2 
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Figure 2 (cont.)  
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Figure 2 (cont.)  
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Figure 3 
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Figure 3 (cont.) 
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Supplementary Figure Legends 

Supplementary Figure 1. Effect of FXaI[16]L on thrombin generation in 

apixaban-treated plasma. (a) Representative thrombin generation tracing in NHP 

with different apixaban concentrations (black, 0; red, 200 nM; blue, 400 nM; cyan, 800 

nM). (b) Quantification of peak thrombin generation at different apixaban 

concentrations is shown as a percentage of normal peak thrombin generation. (c, d) 

Normalized peak thrombin generation was measured after FXaI[16]L was titrated into 

normal plasma supplemented with (c) 250 nM (d) 2.0 µM apixaban. All experiments in 

panels b-d were performed in quadruplicate, and all measurements are shown as mean 

± SD. 

 

Supplementary Figure 2. Reversal of rivaroxaban by hFXaI[16]L in human 

whole blood. (a, b) 500 nM or (c, d) 2.5 µM rivaroxaban (riva) and different 

concentrations of hFXaI[16]L were added to normal human whole blood collected in citrate 

and 25 µg/mL corn trypsin inhibitor (CTI). Representative ROTEM tracings (panels a 

and c: black, dilution buffer only; red, rivaroxaban only; blue, rivaroxaban plus 0.3 nM 

hFXaI[16]L; green, rivaroxaban plus 3.0 nM hFXaI[16]L) and clot times (CT; panels b and d) 

are shown. 

 

Supplementary Figure 3. Characterization of GD-FXaS195A. One µM rivaroxaban 

and different concentrations of GD-FXaS195A (black bars) were incubated in platelet-poor 

NHP at room temperature for 30 min. Prothrombin times (PT) were then measured and 



www.manaraa.com

60 

 

compared to NHP alone (gray bar) and NHP incubated with GD-FXaS195A alone (open 

bar). Experiments were performed in quadruplicate and plotted as the mean ± SEM. 

 

Supplementary Figure 4. Effect of GD-FXaS195A on thrombin generation in 

high-dose-rivaroxaban-treated plasma. Increasing concentrations of GD-FXaS195A 

were added to NHP containing 2.5 µM rivaroxaban and thrombin generation at 37°C was 

measured. Peak thrombin generation was normalized to that of NHP and plotted against 

GD-FXaS195A concentration. Experiments were performed in quadruplicate, and all 

measurements are shown as mean ± SD. 

 

Supplementary Figure 5. Effect of aPCCs on thrombin generation in 

rivaroxaban-treated plasma. Increasing concentrations of aPCC were added to NHP 

containing 500 nM rivaroxaban and thrombin generation at 37°C was measured. Peak 

thrombin generation was normalized to that of NHP and plotted against aPCC 

concentration. Experiments were performed in quadruplicate, and all measurements are 

shown as mean ± SD. 

 

Supplementary Figure 6. Representative carotid artery Doppler flow 

tracings following FeCl3-injury. Rivaroxaban was administered to WT C57BL/6J 

mice and FeCl3 (7.5%) injury was performed. Blood flow is plotted against time after the 

2 minute FeCl3 injury period. Where shown (red arrow), protein (mFXaI[16]L or GD-

FXaS195A) was infused 30 minutes later and blood flow was monitored for another 30 

minutes. 
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Supplementary Figures 

Supplementary Figure 1 
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Supplementary Figure 1 (cont.) 
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Supplementary Figure 2 
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Supplementary Figure 2 (cont.) 
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Supplementary Figure 4 
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Abstract 

Direct inhibitors of coagulation factor Xa (FXa) are a promising oral anticoagulant 

therapy. However, there is no approved strategy to reverse their anticoagulant effects in 

the event of bleeding or urgent medical procedures.  We previously demonstrated that a 

variant of FXa, FXaI[16]L, can reverse the effects of the direct FXa inhibitor rivaroxaban in 

vivo. Because FXaI[16]L is poorly inhibited active site inhibitors when free in plasma but 

susceptible to inhibition at the site of vascular injury when bound to factor Va (FVa), we 

hypothesized that reversal of rivaroxaban by FXaI[16]L could not be a result of the 

resistance of FXaI[16]L to the inhibitor. Inhibition studies revealed that both wild type 

(wt)-FXa and FXaI[16]L were both highly inhibited by rivaroxaban at therapeutic 

concentrations. Thrombin generation studies also indicated that both wt-FXa and 

FXaI[16]L could reverse the effects of rivaroxaban despite being highly inhibited. By 

measuring the kinetics of FXa inhibition by antithrombin III (ATIII), we found that 

rivaroxaban protects FXa from irreversible inactivation by ATIII, and creates a pool of 

FXa reversibly bound to the anticoagulant. In silico kinetic simulations demonstrated 

that, because ATIII-inhibited FXa and rivaroxaban inhibited FXa are separated by free 

FXa, a steady state of free FXa is formed that persists with an extended half-life. This 

results in a paradoxical increase in free FXa in the presence of the anticoagulant, and 

explains why administration of FXaI[16]L can restore normal hemostasis in the face of the 

anticoagulant. In addition to explaining the mechanism of action of a novel bypassing 

agent for direct FXa inhibitors, these results also indicate that active site inhibition of 

FXa may not be as straightforward as previously thought. 
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Introduction 

Small molecule active site antagonists of coagulation factor Xa (FXa) and thrombin have 

been approved in the last 10 years in the United States, Canada, and Europe as oral 

anticoagulants to treat patients at risk for thrombosis. Compared to the widely used oral 

anticoagulant warfarin, these target-specific oral anticoagulants (TSOACs) are at least as 

effective at prevention of thrombosis [87, 94-96, 137]. Because TSOACs also have more 

straightforward pharmacokinetics and fewer food-drug interactions than warfarin, most 

patients taking these new agents do not need routine coagulation monitoring [107]. 

Unfortunately, while some studies have shown that TSOACs have a lower bleeding risk 

than warfarin, bleeding episodes still occur [102, 103]. In the event of a major bleeding 

episode or the need for an urgent invasive procedure, there are no approved approaches 

to reverse the anticoagulant effects of TSOACs [107]. However, there are several 

strategies currently being explored. These include engineered drug-specific antidotes 

[112, 117] as well as nonspecific bypassing agents [123, 124, 126-128, 135]. 

We have recently shown that a variant of FXa, FXaI[16]L, can potently reverse the 

anticoagulant effects of the direct FXa inhibitors in vitro and in vivo. This “zymogen-

like” variant of FXa has a single amino acid substitution that disrupts the conformational 

transition from inactive zymogen to active serine protease [44]. Thus, despite FXaI[16]L 

being fully proteolytically activated, it retains many of the properties of the zymogen, 

including poor active site function. This makes FXaI[16]L resistant to active site inhibitors 

and giving the variant a longer plasma half-life than wild-type (wt)-FXa [59]. 

Importantly, the impaired function of FXaI[16]L can be rescued by binding to the cofactor, 

FVa, on membranes and assembly in the prothrombinase complex [44, 59]. These 
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characteristics allow FXaI[16]L to circulate in plasma in a low-activity zymogen-like state 

but rapidly generate thrombin at the site of vascular injury. 

Early studies with FXaI[16]L demonstrated that it was able to bypass the intrinsic pathway 

defect in animals deficient in factor VIII (FVIII) or factor IX (FIX) and restore normal 

hemostasis [60]. The mechanism for this is relatively straightforward, since FXaI[16]L acts 

downstream of the missing factors in these animals. On the other hand, the mechanism 

by which FXaI[16]L could reverse the effects of direct FXa inhibitors is less obvious, since 

FXaI[16]L acts at the same position in the coagulation cascade as the anticoagulant. In our 

previous study, we observed FXaI[16]L to be effective, not at stoichiometric quantities, but 

at catalytic concentrations compared to the anticoagulant. This indicates that FXaI[16]L 

cannot be acting as a drug-sequestering antidote, and instead must somehow bypass the 

effects of the anticoagulant. One possibility is that FXaI[16]L, because of its resistance to 

active site probes, might also be resistant to direct FXa inhibitors and therefore be able 

to generate thrombin in the presence of the anticoagulant. However, FXaI[16]L can only 

generate thrombin at a high rate when assembled in the prothrombinase complex [44, 

59]. Under these conditions, active site function, and, accordingly, susceptibility to 

inhibition, would likely be restored. If this is the case, FXaI[16]L must generate thrombin 

in the presence of a direct FXa inhibitor by some alternative mechanism. 

In this study, we describe a detailed kinetic characterization of the mechanism by which 

FXaI[16]L reverses the anticoagulant effects of direct FXa inhibitors. Surprisingly, our 

findings suggest an unexpected mechanism by which reversal is achieved through 

competition between the pharmacologic inhibitor (rivaroxaban) and endogenous plasma 

proteinase inhibitors (ATIII) for binding to FXa. These may have broad implications for 
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better understanding the mechanism by which the seemingly simple direct oral 

anticoagulants function.   

Methods 

Reagents.  Z-Gly-Gly-Arg-AMC was from Bachem Bioscience Inc. Technothrombin 

thrombin calibrator and reagent RB were from Diapharma Group Inc. Pooled normal 

human plasma (NHP) and human factor X-deficient plasma were obtained from George 

King Biomedical, Inc. Rivaroxaban and dabigatran were from Selleck Chemicals. All 

tissue culture reagents were from Invitrogen except insulin-transferrin-sodium selenite, 

which was from Roche. o-phenylenediamine dihyrdochloride (OPD), Gly-Pro-Arg-Pro-

Amide (GPRP), and hexadimethrine bromide (polybrene) were from Sigma-Aldrich. 

Biotinylated Glu-Gly-Arg-chloromethylketone (B-EGRCK) and biotinylated Phe-Pro-

Arg-chloromethylketone (B-FPRCK) were from Haematologic Technologies. 

Spectrozyme FXa (SpecXa) was from American Diagnostica, Inc. Fondaparinux sodium 

was from Apotex Corp. Innovin was from Dade Behring. Affinity-purified goat anti-

human FX polyclonal IgG (catalog no. GAFX-AP) and peroxidase-conjugated affinity-

purified sheep anti-human antithrombin III polyclonal IgG (catalog no. SAAT-APHRP) 

were obtained from Enzyme Research Laboratories. Horseradish peroxidase conjugated 

streptavidin was purchased from Life Technologies. Enzygnost TAT micro ELISA kit was 

purchased from Siemens. 

Proteins. The FX activator from Russell's viper venom, RVVX-CP was purified as 

previously described[145]. Recombinant hFXI[16]L was expressed in human embryonic 

kidney 293 (HEK293) cells, purified from media, and activated using RVVX-CP as 
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previously described[146, 147]. Recombinant hFVa was prepared as previously 

described[157]. Human ATIII was purified from plasma as previously described[158]. 

Thrombin Generation Assays. Thrombin generation assays (TGA) in NHP were 

performed as previously described[59] with a slight modification to accommodate the 

addition of rivaroxaban and reversal agents as appropriate. 40 µL NHP was added to a 

microtiter plate (Nunc; F16 black Maxisorp) along with 10 µL Technothrombin RB (2 pM 

TF, 4.0 µM phospholipid). 3 µL rivaroxaban dissolved in 20 mM HEPES, 150 mM NaCl, 

0.1% PEG-8000, pH 7.4 (HBS-PEG) was added to NHP in a black microtiter plate 

(Nunc; F16 black Maxisorp) along with the 2 µL of protein (wt-hFXa or hFXaI[16]L). The 

reaction was initiated immediately by adding Z-Gly-Gly-Arg-AMC in 15 mM CaCl2 (50 

µL; 0.5 mM final). Fluorescence (λex=360 nm, λem=460 nm) was measured at one minute 

intervals for 90 minutes at 37°C using a Spectramax M2e (Molecular Devices) plate 

reader. The Technothrombin calibrator kit was used to convert raw fluorescence 

intensity to thrombin concentration. Thrombograms (nM thrombin vs. time) were made 

to determine the lag time, peak height, and endogenous thrombin potential (ETP). 

Kinetic Characterization of FXa Variant Inhibition by Rivaroxaban. 

Increasing concentrations of rivaroxaban were added to the chromogenic substrate 

SpecXa (100-300 µM depending on the enzyme used) in HBS-PEG buffer containing 2 

mM CaCl2. The reaction was initiated with addition of wt-hFXa or hFXaI[16]L and A405 was 

monitored over time to measure FXa amidolytic activity (depending on the experiment 

and the enzyme, 2-6 nM FXa was used to ensure sufficient signal). Initial velocities were 

plotted against inhibitor concentration and fit to the quadratic velocity equation for tight 

binding competitive inhibition to determine Ki values. To determine inhibition kinetics 
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of FXa in the prothrombinase complex, experiments were repeated in the presence of 30 

nM FVa and 50 µM phospholipid vesicles (80% phosphatidylcholine, 20% 

phosphatidylserine). 

Quantification of FXa-ATIII Complex Formation in Human Plasma. 0, 100 

nM, or 1 µM rivaroxaban was added to recalcified (5 mM CaCl2 final) human FX-

deficient plasma at room temperature along with 1.33 mM GPRP and 1 µM dabigatran to 

prevent clotting. 25 nM wt-hFXa or hFXaI[16]L was added to aliquots of the plasma 

mixture at different time points in a reverse time course, and all samples were quenched 

simultaneously with 50 µM B-EGRCK. Samples were allowed to incubate with B-EGRCK 

for 10 minutes and then diluted 10-fold with ELISA blocking buffer (PBS, 0.1% Tween-

20, 6% BSA, pH 7.4). In some experiments, 750 nM fondaparinux was added to the 

plasma mixture before addition of FXa, and in these studies, the reaction was quenched 

with 50 µg/mL polybrene (to neutralize the fondaparinux[159]) in addition to 50 µM B-

EGRCK.  FXa-ATIII standards were prepared by incubating 500 nM wt-FXa or FXaI[16]L 

with 5 µM hATIII, 6 µM fondaparinux, and 5 mM CaCl2 in HBS-PEG for 30 minutes. The 

standard was then serially diluted in FX-deficient plasma to make FXa-ATIII standards 

ranging from 0-30 nM. For experiments with fondaparinux, standards also contained 

750 nM fondaparinux and 50 µg/mL polybrene to account for matrix effects. All FXa-

ATIII standards were diluted 10-fold with ELISA blocking buffer before use. FXa-ATIII 

levels in the samples were measured using a novel sandwich ELISA. 96-well 

immunoassay plates were incubated overnight at 4°C with 100 µL 10 µg/mL affinity-

purified goat anti-human FX polyclonal IgG diluted in 50 mM sodium carbonate, pH 9.6. 

Plates were washed with PBS+ 0.1% Tween-20, pH 7.4, and then blocked with blocking 

buffer at room temperature for 90 minutes. Plates were then washed and incubated with 
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100 µL of the 10-fold diluted sample described above for 1 hour at 37°C. After washing 

again, plates were incubated with 100 µL of 2 µg/mL peroxidase-conjugated affinity-

purified sheep anti-human antithrombin III polyclonal IgG at 37°C for 1 hour. Following 

a final wash step, 100 µL of freshly prepared OPD solution (1 mg/mL OPD in 10 mM 

sodium citrate, pH 4.5 and 0.006% hydrogen peroxide) was added to each well and 

allowed to incubate for 2 minutes. The reaction was stopped with addition of 50 µL 3M 

H2SO4. Plates were incubated at room temperature for 30 minutes before reading A490 in 

a SpectraMax 190 microplate reader (Molecular Devices). FXa-ATIII concentrations 

were determined using the generated standard curve. 

Quantification of FXa-ATIII Complex Formation in a Purified System. 0, 5 

nM, or 50 nM rivaroxaban was added to 2.6 µM hATIII in HBS-PEG, and 5 mM CaCl2. 

25 nM wt-hFXa or hFXaI[16]Lwas then added and incubated as described above. Reactions 

were stopped with addition of 50 µM B-EGRCK and allowed to incubate with B-EGRCK 

for 10 minutes before 10-fold dilution with ELISA blocking buffer. FXa-ATIII complex 

formation was quantified using the ELISA described above. Standards were also 

prepared as above, but diluted into HBS-PEG instead of FX-deficient plasma. 

Quantification of FXa-B-EGRCK Complex Formation. FXa-B-EGRCK standards 

were prepared by incubating 500 nM wt-FXa or FXaI[16]L with 50 µM B-EGRCK in HBS-

PEG for 30 minutes and then serially diluted in FX-deficient plasma to make FXa-B-

EGRCK standards ranging from 0-30 nM. For experiments with fondaparinux, 

standards also contained 750 nM fondaparinux and 50 µg/mL polybrene to account for 

matrix effects. FXa-BEGRCK labeling was measured using a novel ELISA. The ELISA 

was nearly identical to the FXa-ATIII ELISA described above, but with the following 
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modifications: Samples and standards were diluted 150-fold instead of 10-fold. Instead 

of the ATIII-detection antibody, 100 µL 0.25 µg/mL horseradish peroxidase-conjugated 

streptavidin diluted in ELISA dilution buffer was added. All other steps were identical. 

Determination of FXa distribution using known rate constants. We used 

KinTeK Explorer (KinTeK Corp.) to calculate the concentration of the FXa-ATIII 

complex, the FXa-rivaroxaban complex, and free FXa over time. 25 nM free FXa, 3.4 µM 

ATIII, and different concentrations of rivaroxaban were used as starting conditions, and 

the FXa distribution was determined over time, subject to the following expressions: 

 

where E represents free FXa, R represents free rivaroxaban, AT represents ATIII, E.R 

represents rivaroxaban-bound FXa, and E.AT represents antithrombin-bound FXa. 

Rivaroxaban association (1.7x107 M-1s-1) and dissociation (5x10-3 s-1) rate constants were 

used for the first expression[80], and the second-order rate constant for ATIII inhibition 

(4x103 M-1s-1) of FXa was used for the second expression[160]. 

Determination of the kinetics of thrombin-ATIII complex formation. 0, 100 

nM, or 1 µM dabigatran was added to recalcified (5 mM CaCl2 final) human 

prothrombin-deficient plasma at room temperature along with 1.33 mM GPRP to 

prevent clotting. 500 pM plasma-derived human α-thrombin was added to aliquots of 

the plasma mixture at different time points in a reverse time course, and all samples 

were quenched simultaneously with 50 µM B-FGRCK. Samples were then analyzed for 

TAT content with the Enzygnost TAT micro kit per the manufacturer's instructions. 
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Results 

FXaI[16]L is not resistant to rivaroxaban:  Based on its zymogen-like character, we 

initially presumed that FXaI[16]L was effective in reversing the inhibitory effect of 

rivaroxaban because of its lower affinity for active site inhibitors compared to wt-FXa. 

Indeed, we observed a ~38-fold difference in the Ki of rivaroxaban between wt-FXa and 

FXaI[16]L (Fig. 1a).  Despite this, we were surprised to find that wt-FXa and FXaI[16]L were 

both equally effective reversing rivaroxaban in TGA experiments (Fig. 1b). This 

indicates that the ability of FXaI[16]L to overcome the effects of rivaroxaban cannot be 

explained by differences in affinity of the free enzyme for the inhibitor.  Further, 

consistent with our previous observations that FXaI[16]L is rescued upon assembly in the 

prothrombinase complex[44], the Ki of rivaroxaban for wt-FXa and FXaI[16]L in 

prothrombinase were the same (Fig 1a). While this accounts for the equivalence of wt-

FXa and FXaI[16]L, it fails to explain how the proteins generate thrombin in the face of 

rivaroxaban considering the inhibitor concentration is more than 10-fold greater than 

the Ki for wt-FXa and FXaI[16]L (free or prothrombinase).  Collectively these data suggest 

that other aspects of the regulation of active FXa in plasma must contribute to the 

bypassing effects of these enzymes. 

FXa can paradoxically persist in plasma in the presence of rivaroxaban: 

Normally, FXa introduced into plasma is irreversibly inhibited by ATIII, resulting in 

rapid first-order decay with a half-life of 2-3 minutes[28, 64]. A hallmark of FXaI[16]L is 

its resistance to ATIII inhibition[59, 60].  We measured the kinetics of FXa-ATIII 

complex formation by ELISA after addition of FXa to plasma in the presence of 

rivaroxaban. Increasing concentrations of rivaroxaban inhibited FXa-ATIII complex 
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formation with wt-FXa (Fig. 2a). As expected, FXaI[16]L was resistant to ATIII, but 

rivaroxaban further decreased the rate of ATIII inhibition (Fig. 2b). Importantly, the 

rates of ATIII inhibition of wt-FXa and FXaI[16]L, which differed by ~20-fold in the 

absence of rivaroxaban, were nearly identical in the presence of 1 µM rivaroxaban 

(Supplementary Table 1). This indicates that wt-FXa and FXaI[16]L react with ATIII in 

a similar way in the presence of the inhibitor. In concurrent experiments, to account for 

the decrease in FXa-ATIII complex formation in the presence of rivaroxaban, we used 

saturating amounts of biotinylated Glu-Gly-Arg-chloromethylketone (B-EGRCK) to 

covalently trap and label all FXa species (free and rivaroxaban-bound) not irreversibly 

inhibited by ATIII. B-EGRCK labeling was increased in rivaroxaban-containing samples 

compared to rivaroxaban-free samples (Fig. 2c,d and Supplementary Table 2). 

Together, measurements of FXa-ATIII and B-EGRCK labeling of FXa account for all the 

FXa added to the system. We also measured FXa-ATIII formation and B-EGRCK 

labeling kinetics in a purified system with physiologic concentrations of purified 

ATIII[161] and obtained comparable results to those in plasma (Supplementary Fig. 1 

and Supplementary Tables 3-4). 

The ability of rivaroxaban to diminish FXa-ATIII complex formation over time suggests 

a mechanism by which both wt-FXa and FXaI[16]L can persist and function in the 

presence of rivaroxaban. Specifically, these data are consistent with formation of a pool 

of FXa that is irreversibly inhibited by ATIII and a pool of FXa reversibly inhibited by 

rivaroxaban. Importantly, since rivaroxaban and ATIII compete for binding, these two 

pools must be separated by free, uninhibited FXa (Fig. 2e). This steady-state level of 

free FXa is likely responsible for the thrombin generation observed in the face of 

rivaroxaban. Directly measuring this free FXa, however, is complicated by the fact that 
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any probe would perturb the equilibrium between FXa and rivaroxaban. As an 

alternative, we used the known rate constants for FXa inhibition by ATIII[160] and the 

on and off rates for rivaroxaban binding to FXa[80] to calculate the amount free FXa 

present at steady state. In the absence or presence of rivaroxaban, calculated free FXa 

levels drop rapidly after initial mixing (Fig. 2f,g, blue traces). In the absence of 

rivaroxaban, this decrease in free FXa is due to inhibition by ATIII (Fig. 2f, red trace). 

However, in the presence of rivaroxaban, the majority of FXa becomes reversibly 

complexed with the FXa inhibitor (Fig. 2g, green trace), with an associated decrease in 

FXa-ATIII complex formation (red trace). Plotting the kinetics of free FXa concentration 

on semi-logarithmic scale revealed that, without rivaroxaban, the free FXa concentration 

decays exponentially, such that less than 10 pM free FXa remains after 10 minutes (Fig. 

2h, black trace). Interestingly, in the presence of rivaroxaban, following a rapid initial 

decrease, free FXa levels reach a nonzero steady state (Fig. 2h, magenta and cyan 

traces). Remarkably, this causes a paradoxical and persistent increase in levels of free 

FXa at pharmacologic rivaroxaban concentrations (Fig. 2i). Since we have previously 

shown that 30-100 pM free FXa is sufficient for normal thrombin generation in 

hemophilic plasma[59], these free FXa levels can account for the restoration of 

hemostasis in the presence of rivaroxaban. 

Based on our model (Fig. 2e), direct FXa inhibitors establish a new equilibrium that not 

only diminishes the rate of FXa-ATIII complex formation but also establishes a small but 

important pool of free FXa. In support of this model, we experimentally tested the 

impact of disrupting this equilibrium.  We found that addition of fondaparinux, a 

heparin derivative that accelerates ATIII inhibition of FXa, markedly enhanced the 

kinetics of wt-FXa-ATIII complex formation (Fig. 3a and Supplementary Table 5), 
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and B-EGRCK labeling was correspondingly reduced (Fig. 3b and Supplementary 

Table 2). The addition of increasing amounts of rivaroxaban blunted the effect of 

fondaparinux and reduced FXa-ATIII complex formation.  Similar results were obtained 

with FXaI[16]L (Supplementary Fig. 2). This redistribution of FXa away from ATIII, 

even in the presence of fondaparinux, is not specific to rivaroxaban as p-

aminobenzamidine, a FXa active site inhibitor with fast dissociation kinetics[162], also 

inhibits FXa-ATIII complex formation (data not shown). Together these data show that 

any active site directed FXa inhibitor will disrupt FXa-ATIII complex formation and 

establish a small pool of free FXa.  The size of the pool will depend on how much FXa is 

produced or how much is added exogenously.  

Finally, we hypothesized that active site inhibitors of other serine proteases should affect 

their inhibition by serpins. To test this, we quantified the kinetics of thrombin inhibition 

by ATIII in the presence of dabigatran, a direct thrombin inhibitor, using an ELISA 

specific to the thrombin-ATIII complex (TAT). Dabigatran markedly inhibited TAT 

formation at concentrations within the therapeutic range of the anticoagulant (Figure 

4), suggesting that competition between reversible active site inhibitors and serpins may 

not be unique to FXa, but rather, a common property of serine proteases. 

Discussion 

The observation that FXaI[16]L, a zymogen-like variant of FXa, was an effective bypassing 

agent for direct FXa inhibitors prompted us to explore its mechanism of action. Initially, 

we hypothesized that FXaI[16]L would be resistant to active site inhibition and therefore 

could generate thrombin in the presence of rivaroxaban. However, wt-FXa and FXaI[16]L 
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were both highly inhibited by rivaroxaban yet comparably effective at restoring thrombin 

generation in the face of this inhibition. As a possible explanation for these seemingly 

contradictory findings, we discovered that rivaroxaban shifts the distribution of FXa 

from an irreversible complex with ATIII to a reversible complex with rivaroxaban (Fig. 

2). Because the pathway for conversion of the rivaroxaban-inhibited enzyme to the 

complex with ATIII requires formation of free Xa, a steady-state amount of free FXa is 

formed that is not seen in the absence of rivaroxaban. Thus, pharmacologically relevant 

concentrations of rivaroxaban produce a paradoxical increase in free FXa. It is important 

to note that the increase in free FXa is most relevant when FXa is administered 

exogenously. Normally, the overall result of rivaroxaban therapy is a net decrease in 

endogenous FXa activity. In this context, a pool of FXa will exist, but its magnitude and 

significance will depend on the rate of FXa formation. 

The fact that rivaroxaban competes with ATIII for FXa has major implications for the 

use of active site directed anticoagulants and their antidotes. In vivo, prevention of FXa 

inactivation by ATIII may result in abnormal levels of FXa. While this FXa will circulate 

predominantly in complex with the anticoagulant, as the anticoagulant is metabolized, 

this FXa would be released gradually and could contribute to thrombosis. Although most 

reports of rebound hypercoagulability following rivaroxaban cessation have been 

attributed to under-anticoagulation in high-risk patients, it is plausible that release of 

free FXa may contribute to this [163, 164]. This could be particularly important in the 

setting of reversal of direct FXa inhibitors with an antidote like GD-FXaS[195]A. Instead of 

FXa being released from the rivaroxaban-FXa complex slowly, administration of these 

antidotes could result in rapid liberation of FXa. In a patient population already enriched 

for underlying thrombophilia, this could result in paradoxical thrombosis. 
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Our findings reveal that rivaroxaban-mediated inhibition of FXa-ATIII complex 

formation is not a result of the kinetics of rivaroxaban binding, but instead, a 

consequence of the kinetics of ATIII inactivation of FXa. Specifically, this is likely related 

to the binding of ATIII to FXa, which is normally extremely weak but enhanced by 

addition of fondaparinux [160]. The important implication is that it is not possible to 

engineer an active site antagonist of FXa that does not substantially disrupt the FXa-

ATIII interaction, and this suggests that the approach of inhibiting the FXa active site 

may not be as effective as hoped. On the other hand, the ability of fondaparinux to 

rapidly eliminate the FXa-rivaroxaban pool suggests a specific mechanistic 

countermeasure to this problem, should it arise. 

This work demonstrates that inhibition of the active site of a serine protease is not as 

straightforward once thought. The active site is not only responsible for substrate 

cleavage. Its kinetic activity also governs the enzyme's susceptibility to irreversible 

plasma protease inhibitors. Thus, a small molecule antagonist must disrupt both kinetic 

processes. This is not unique to rivaroxaban, nor is it unique to FXa. Our results provide 

a provocative mechanism for the ability of FXa to generate thrombin in the presence of a 

reversible active site inhibitor.  
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Figure Legends 

Figure 1. Reversal of the anticoagulant effect of rivaroxaban by wt-FXa and 

FXaI[16]L. (a) Inhibition kinetics of rivaroxaban for wt-hFXa and hFXaI[16]L were 

measured using the FXa peptidyl substrate, SpecXa. Studies were performed with free 

FXa as well as with FXa assembled in prothrombinase by addition of 50 µM PCPS and 

30 nM FVa. Initial velocity measurements were fit to the quadratic velocity equation for 

tight binding competitive inhibition to determine Ki values. Error values are reported as 

± 2 SD of the fit. All experiments were performed in duplicate. (b) Peak thrombin 

generation was measured in NHP supplemented with 500 nM rivaroxaban and 

increasing concentrations of wt-hFXa (black) or hFXaI[16]L (blue). Experiments were 

performed in quadruplicate and peak thrombin ± SD versus FXa concentration is shown 

on a semi-logarithmic plot. 

 

Figure 2. Distribution of FXa in plasma in the presence or absence of 

rivaroxaban. Kinetics of FXa-ATIII complex formation after addition of 25 nM (a) wt-

hFXa or (b)  hFXaI[16]L to FX-deficient plasma containing 0 (-■-), 100 nM (-●-) or 1 µM (-

▲-) rivaroxaban. Solid lines represent the fit of the points to a single exponential rise. B-

EGRCK labeling of (c) wt-hFXa or (d) hFXaI[16]L was quantified by ELISA in the presence 

of 0 (-■-), 100 nM (-●-) or 1 µM (-▲-) rivaroxaban. Solid lines in c represent fitting to a 

single exponential decay with the exception of the 1 µM line (which could not be fit well 

and represents a smoothed connection of the points). The solid lines in d also represent 

a smoothed connection of the data points. Data points in (a-d) are plotted as the mean 

of 3 separate experiments ± SEM. (e) Scheme depicts ATIII-inhibited FXa and 
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rivaroxaban-inhibited FXa, separated by free FXa. Known rate constants for each kinetic 

step are indicated. Concentration of different FXa species in the (f) absence or (g) 

presence of 50 nM rivaroxaban were calculated using known rate constants and an initial 

(t=0) concentration of 25 nM free FXa. FXa-ATIII complex levels (red traces), free-FXa 

levels (blue traces), and FXa-rivaroxaban complex levels (green trace in g) are shown. 

(h) Free FXa levels (calculated as in f and g) at different rivaroxaban concentrations (0, 

black; 5 nM, magenta; 50 nM, cyan) are plotted versus time on a semi-logarithmic scale.  

(i) Calculated free FXa levels from (h) at 10 or 30 minutes are plotted versus rivaroxaban 

concentration. The gray box indicates the therapeutic range of rivaroxaban 

concentrations.  

 

Figure 3. Effect of fondaparinux on rivaroxaban inhibition of FXa-ATIII 

complex formation. Kinetics of (a) FXa-ATIII complex formation and (b) B-EGRCK-

labeling after addition of 25 nM wt-hFXa to FX-deficient plasma containing 750 nM 

fondaparinux and 0 (-■-), 100 nM (-●-) or 1 µM (-▲-) rivaroxaban. The solid lines 

represent the fit of the points to a single exponential rise (for the 0 rivaroxaban data), 

and a two-exponential rise (for the 100 nM and 1 µM data). Data are shown as the mean 

of 3 separate experiments ± SEM.  

 

Figure 4. Effect of dabigatran on the kinetics of thrombin inhibition by 

ATIII. Kinetics of thrombin-ATIII (TAT) complex formation after addition of 500 pM 

thrombin to human prothrombin deficient plasma containing 0 (-■-), 100 nM (-●-) or 1 
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µM (-▲-) dabigatran. The solid lines are arbitrarily drawn. Data are shown as the mean 

of 2 separate experiments ± SEM. 
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Figure 2 
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Figure 2 (cont.) 
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Figure 2 (cont.) 
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Figure 2 (cont.) 

 

 

  



www.manaraa.com

92 

 

Figure 3 
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Figure 4  
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Supplementary Figure Legends 

Supplementary Figure 1. Kinetics of FXa-ATIII and FXa-B-EGRCK complex 

formation in a purified system. Kinetics of FXa-ATIII complex formation were 

measured after mixing of (a) 25 nM wt-hFXa or (b) hFXaI[16]L with 2.6 µM hATIII in the 

presence of 0 (-■-), 100 nM (-●-) or 1 µM (-▲-) rivaroxaban. Solid lines represent the fit 

of the points to a single exponential rise with offset. B-EGRCK labeling of (c) wt-hFXa or 

(d) hFXaI[16]L not inhibited by ATIII was quantified by ELISA in the presence of 0 (-■-), 

100 nM (-●-) or 1 µM (-▲-) rivaroxaban. The solid lines for the 0 and 100 nM 

rivaroxaban experiments in panel c represent the fit of the points to a single exponential 

rise with offset. All other drawn lines (in panel c and d) are a smoothed connection of the 

points due to poor fit. Error bars indicate the SEM. 

Supplementary Figure 2. Effect of fondaparinux and rivaroxaban on FXa-

ATIII complex formation and B-EGRCK labeling of FXaI[16]L. Kinetics of FXa-

ATIII complex formation (a) and FXa labeling by B-EGRCK (b) after addition of 25 nM 

hFXaI[16]L to FX-deficient plasma containing 750 nM fondaparinux and 0 (-■-), 100 nM 

(-●-) or 1 µM (-▲-) rivaroxaban. The solid lines represent the fit of the points to a single 

exponential rise except for the 1 µM data in a and the 100 nM data in b, which are fit to a 

two-exponential rise. Error bars indicate the SEM. 
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Supplementary Figures 

Supplementary Figure 1 
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Supplementary Figure 1 (cont.) 
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Supplementary Figure 2 
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Supplementary Tables 

Supplementary Table 1.  

 

Effect of rivaroxaban on pseudo-first-

order rate constants of FXa-ATIII 

complex formation in plasma. 

 

 wt-FXa FXaI[16]L 

 

Rivaroxaban kobs kobs 

 

nM s-1 (x10-4) s-1 (x10-4) 

0 33.9±4.8 1.7±0.4 

100 6.2±1.6 2.0±0.2 

1000 1.3±0.5 0.6±0.4 
   

kobs values were determined by fitting the data 

in Figures 2a and 2b to a single exponential 

rise expression with offset. The data are 

reported as the fitted values ± 2 SD. 
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Supplementary Table 2.  

 

Effect of rivaroxaban and fondaparinux on 

pseudo-first-order rate constants for the decrease 

in B-EGRCK labeling of wt-FXa in plasma. 

 

  -

Fondaparinux 

+Fondaparinux 

 

Protein Rivaroxaban kobs kobs 

 

 nM s-1 (x10-4) s-1 (x10-4) 

wt-FXa 0 24.4±5.7 938.8±18.8 

wt-FXa 100 5.2±2.8 913.8±29.5* 

wt-FXa 1000 ND 145.3±19.0* 
    

kobs values were determined by fitting the data in Figures 

2c and 3b to a single exponential decay expression with 

offset. The data are reported as the fitted values ± 2 SD. 

*Better fit was obtained with a two-exponential decay 

expression with offset. kobs represents the average of the 

two fitted rate constants, weighted for amplitude of each 

exponential term ± 2 SD. 

ND, not determined. 
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Supplementary Table 3.  

 

Effect of rivaroxaban on pseudo-first-order rate 

constants of FXa-ATIII complex formation in a 

purified system 

 

Protein Rivaroxaban kobs 

 

 nM s-1 (x10-4) 

wt-FXa 0 21.3±7.9 

wt-FXa 5 15.9±3.5 

wt-FXa 50 0.9±0.5 
   

FXaI[16]L 0 3.1±0.8 

FXaI[16]L 5 3.5±0.7 

FXaI[16]L 50 2.0±0.3 

kobs values were determined by fitting the data in 

Supplementary Figures 1a and 1b to a single 

exponential rise expression with offset. The data are 

reported as the fitted values ± 2 SD. 
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Supplementary Table 4.  

 

Effect of rivaroxaban on pseudo-first-order 

rate constants for the decrease in B-EGRCK 

labeling in a purified system. 

 

Protein Rivaroxaban kobs 

 

 nM s-1 (x10-4) 

wt-FXa 0 7.7±2.1 

wt-FXa 5 24.0±13.9 

wt-FXa 50 ND 
   

FXaI[16]L 0 ND 

FXaI[16]L 5 ND 

FXaI[16]L 50 ND 
   

kobs values were determined by fitting the data in 

Supplementary Figures 1c and 1d to a single 

exponential decay expression with offset. The data 

are reported as the fitted values ± 2 SD. 

ND, not determined. 
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Supplementary Table 5. 

 

Effect of rivaroxaban on pseudo-

first-order rate constants of FXa-

ATIII complex formation of wt-

FXa in plasma in the presence of 

750 nM fondaparinux. 

 

Protein Rivaroxaban kobs 

 

 nM s-1 (x10-4) 

wt-FXa 0 804.8±177.7 

wt-FXa 100 650.0±33.3* 

wt-FXa 1000 116.4±38.8* 
   

kobs values were determined by fitting the data in 

Figure 3a to a single exponential decay 

expression with offset. The data are reported as 

the fitted values ± 2 SD. 

*Better fit was obtained with a two-exponential 

decay expression with offset. kobs represents the 

average of the two fitted rate constants, weighted 

for amplitude of each exponential term ± 2 SD. 
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Reversal of direct FXa inhibitors using zymogen-like FXa 

The emergence of new oral anticoagulants that directly inhibit the active sites of 

coagulation serine proteases has marked a substantial advance in therapy for thrombosis 

[107]. They have good efficacy [98, 101] and several clinical indications [81, 83, 85, 87-

89, 92, 93], but the lack of an approved reversal agent in the event of bleeding or need 

for emergency surgery is of great concern [107, 109]. Based on the biochemistry and 

pharmacokinetics of the oral direct FXa inhibitors, two broad strategies could be used to 

reverse the effects of these anticoagulants: sequestration of the drug using a specific 

stoichiometric antidote, or bypassing the anticoagulant using a catalytic, pro-hemostatic 

agent. Recently, drug-binding antidotes (i.e. GD-FXaS[195]A and aripazine) have received a 

great deal of attention and are in various stages of clinical development [112, 113]. The 

advantage of these agents is that they are relatively specific to the anticoagulant. 

However, because they must bind the anticoagulant in a 1:1 ratio, high doses are needed. 

In addition to the obvious difficulty of producing such large amounts of a protein 

product, these agents have the potential to deplete endogenous regulators of coagulation 

when present at high concentrations. A pro-hemostatic agent with intrinsic catalytic 

activity might be effective at lower concentrations and thereby avoid the potential pitfalls 

associated with direct antidote-based reversal. Moreover, the development of a strategy 

that reverses the effects of direct FXa inhibitors by a different mechanism of action may 

be useful, since it is not clear which general approach will have the best clinical efficacy. 

Prior to our work, many early studies explored the possibility of repurposing existing 

bypassing agents to reverse the new anticoagulants [123-128, 135], but the results have 

been mixed and devoid of any rational mechanistic explanation for their effects.  
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We have developed a pro-hemostatic bypassing strategy for direct FXa inhibitors using a 

zymogen-like variant of FXa, FXaI[16]L. When free in plasma, this variant is resistant to 

active site inhibitors, has low catalytic activity, and has a long half-life [44, 59]. However, 

it is also fully functional when assembled in prothrombinase, and is thus an effective 

pro-hemostatic molecule [44, 59, 60]. In vitro, we demonstrated that FXaI[16]L can, at 

catalytic concentrations, reverse the anticoagulant effect of the direct FXa inhibitor 

rivaroxaban. This was in stark contrast to GD-FXaS[195]A, which was also very effective, 

but with much poorer potency. FXaI[16]L was also effective in two in vivo hemostasis 

models and, again, more potent than GD-FXaS[195]A. The potency difference we observed 

between FXaI[16]L and GD-FXaS[195]A was consistent with the fact that they work by 

different mechanisms of action. Thus, our results suggest that zymogen-like FXa may be 

a promising bypassing agent for direct FXa inhibitors. 

Determining the efficacy of a reversal strategy 

Given the numerous potential reversal agents for direct FXa inhibitors, it is crucial to 

identify which approaches are the most effective clinically. Ultimately, a large 

randomized trial examining clinically relevant endpoints in bleeding patients or in those 

in need of an invasive procedure is necessary to definitively determine which agent is 

best. However, this is complicated in part because of the time-sensitive nature of 

bleeding, where efficacy of a reversal agent might depend on how rapidly it can be 

administered. Moreover, the relative infrequency of bleeding episodes with these new 

agents [98, 101] makes a large controlled trial difficult. For these reasons, the initial 

clinical trials studying reversal agents for direct FXa inhibitors have been performed in 

healthy volunteers using surrogate markers of coagulation [117, 123]. While this is 
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certainly understandable, it also limits the conclusions that can be drawn about these 

new agents with respect to efficacy and safety. This is particularly true of the risk of 

thrombosis, which cannot be adequately evaluated in healthy volunteers since patients 

taking anticoagulants typically have some degree of underlying hypercoagulability that 

might be exacerbated by the reversal agent. 

Nonetheless, understanding the biochemical mechanism by which each agent works and 

the nature of the surrogate marker being used can give a context in which to interpret 

these clinical trial results. For example, for specific drug-sequestering antidotes, 

measurement of anti-FXa activity is a strong indicator of the degree to which the 

antidote has relieved inhibition of FXa, since these agents reduce the unbound fraction 

of the drug [112]. Thus, in a setting where anticoagulation needs to be reversed before a 

procedure, a normalized anti-FXa activity following administration of a drug-

sequestering antidote almost certainly suggests that the individual is hemostatically 

normal (or at least, at baseline). In contrast, using the anti-FXa activity as an indicator of 

the ability to stop bleeding and improve outcomes is less straightforward. In this 

scenario, the anti-FXa assay still reflects the extent of anticoagulant sequestration by the 

antidote, but does not take into account other factors that affect the outcome of a 

bleeding episode, such as how soon the antidote was administered as well as the specific 

vascular bed that was injured. 

The anti-FXa assay is a poor marker of reversal using a pro-hemostatic bypassing agent, 

since the lower, catalytic quantities of the agent used are heavily diluted to the point of 

being ineffective in this assay. While other assays, such as TG studies or 

thromboelastography (TEG/ROTEM) are certainly responsive to bypassing agents [123-
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126, 128], these assays, unlike the anti-FXa assay, are global coagulation studies that do 

not reflect any specific aspect of coagulation. Therefore, it is impossible to make clinical 

conclusions from these results without a corresponding empirical clinical study. 

Competition between direct FXa inhibitors and endogenous protease 

inhibitors 

Despite the numerous bypassing agents being studied for reversal of direct FXa 

inhibitors, there have been no mechanistic studies exploring how these products could 

overcome the effects of a noncompetitive inhibitor of FXa. Since their biochemistry 

dictates that they do not sequester the inhibitor, these agents could only generate 

thrombin if they allow catalytically active and uninhibited FXa to persist in the presence 

of the inhibitor. However, prior to this work, there has been no plausible explanation for 

how this might occur. 

By studying the mechanism of rivaroxaban reversal by FXaI[16]L, we have discovered a 

characteristic of direct FXa inhibitors that allows a paradoxical increase in the amount of 

uninhibited enzyme in the presence of the inhibitor. In our study, we observed that both 

FXaI[16]L and wt-FXa normalize thrombin generation in the face of rivaroxaban, 

suggesting that the ability of FXaI[16]L to reverse rivaroxaban's effects was not related to 

its zymogenicity. However, the high level of thrombin generation seen in our 

experiments was inconsistent with kinetic studies showing that, when assembled in 

prothrombinase, FXaI[16]L and wt-FXa are both highly inhibited by rivaroxaban. This 

indicated that some previously unreported phenomenon must allow for more 

uninhibited FXa than our kinetic studies predicted. To reconcile these discordant 
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findings, we evaluated rivaroxaban's effect on ATIII, a key regulator of FXa activity in 

plasma. We found that rivaroxaban dose-dependently impaired ATIII-dependent FXa 

inhibition. We also observed a corresponding rise in reversibly inhibited FXa, consistent 

with formation of a rivaroxaban-FXa complex. Together, these observations suggested a 

model wherein FXa can form either a reversible complex with FXa, or else an irreversible 

complex with ATIII. Formation of these complexes is mutually exclusive, and, critically, 

the two complexes are separated by free, uninhibited FXa. Using an in silico approach, 

we determined that a steady-state of uninhibited FXa is generated in the presence of 

rivaroxaban that decays very slowly. This pool of FXa does not exist to a high degree in 

the absence of rivaroxaban, and thus it likely explains the thrombin generation we 

observed. 

This paradoxical increase in free FXa illustrates the importance, and the complexity, of 

the plasma protease inhibitors of the coagulation serine proteases. In the absence of a 

pharmacologic active site inhibitor of FXa, a bolus of FXa would be rapidly inactivated in 

a pseudo-first-order fashion by endogenous protease inhibitors [28, 29]. Within 8 

minutes, less than 1% of the administered FXa would remain. In the presence of a direct 

FXa inhibitor, exogenously administered FXa would become rapidly but reversibly 

bound to the anticoagulant, dramatically slowing the rate of irreversible inactivation of 

the protease and prolonging the half-life of the bolus. While it is certainly true that the 

majority of the bolus would remain inhibited by the anticoagulant, the reversibility of the 

interaction ensures that a small but relevant fraction of uninhibited FXa remains. 

Crucially, the concentration of this small pool of FXa is greater than it would be if 

rivaroxaban were not present. 
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The efficacy of direct FXa inhibitors as anticoagulants suggests that this paradoxical 

increase in free FXa is probably less relevant to endogenously generated FXa. While 

rivaroxaban almost certainly decreases the rate at which endogenously generated FXa is 

inactivated, it is likely that FXa generation in vivo is quite slow compared to exogenous 

bolus administration of FXa. Under these conditions, the pool of FXa reversibly bound to 

the drug is small, and the pool of free FXa is smaller than it would be in the absence of 

the anticoagulant. 

It is possible that some disease states may result in much higher levels of protease 

activation. For example, patients with mechanical heart valves are typically more 

aggressively anticoagulated with warfarin to prevent prosthesis-associated thrombosis 

[165]. Dabigatran, a direct thrombin inhibitor, was surprisingly less effective than 

warfarin for anticoagulation in these patients, despite its good efficacy for other types of 

thromboprophylaxis [99]. A possible explanation for failure of dabigatran in this setting 

is that there is a high rate of prothrombin activation driven by the indwelling contact-

activating valve. Since we observed that dabigatran prevents inhibition of thrombin by 

ATIII, a high rate of thrombin generation could lead to a paradoxical increase in free 

thrombin in the presence of the anticoagulant, thereby reducing its effectiveness. 

In addition to explaining the mechanism of action of FXa-dependent reversal of 

rivaroxaban, our results provide insight into the fundamental rationale for development 

new anticoagulants. At first glance, active site inhibition of the coagulation serine 

proteases seems to be a logical way to achieve anticoagulation, especially when compared 

to the indirect inhibition of coagulation that warfarin provides. Enzymatic active sites are 

routinely targeted with small, orally bioavailable compounds that can easily disrupt 
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substrate binding to the enzyme. However, the substrates of serine proteases are large 

macromolecules that form a broad interface with the enzyme at exosites distinct from the 

site of catalysis [4]. Moreover, serine proteases are regulated by endogenous inhibitors 

that primarily engage the active site [25-27]. For these reasons, an active site directed 

small molecule will have no effect on substrate binding, but will block both catalysis and 

regulatory inhibition. Thus, these "target-specific" anticoagulants are really nonspecific 

with respect to how they affect the kinetics of their targets. Depending on the rate of 

activation of the protease, they might have anticoagulant effects or procoagulant effects. 

Obviously, clinical trials have shown that the anticoagulant effect predominates under 

most conditions. Nonetheless, our results demonstrate that active site antagonism 

affords less precise control over anticoagulation than was initially hoped. These findings 

also suggest that targeting macromolecular complex assembly might provide better 

control over anticoagulation, since this would have no effect on the active site function of 

the protease and thus not interfere with endogenous regulators of protease activity. 

Development of such an agent is difficult, however, since it would require disruption of 

large protein-protein interfaces. 

Future directions 

This work raises several new questions that need to be addressed through future studies. 

Although we have shown that direct FXa inhibitors compete with ATIII for binding and 

inhibition of FXa, ATIII is not the only plasma protease inhibitor of FXa. α2M is likely to 

be as important, and perhaps even more important, than ATIII for the regulation of FXa 

activity in vivo. The mechanism of action of α2M inhibition requires proteolysis of α2M 

by FXa [27]. Thus, we expect that direct FXa inhibitors to interfere with α2M-mediated 
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FXa inactivation. This can best be evaluated in an in vitro system using purified FXa and 

α2M, since the ATIII present in plasma would interfere with this determination. At 

different time points, ATIII and heparin (to accelerate the reaction) would then be added 

to inactivate any FXa not in complex with α2M. Since FXa trapped within α2M can still 

hydrolyze oligopeptide substrates [27], we can use FXa chromogenic activity as an 

indicator of the degree to which FXa is "protected" from ATIII by α2M. Performing such 

experiments in the presence and absence of a direct FXa inhibitor will then allow us to 

determine how the anticoagulant affects the α2M/FXa interaction. 

Our kinetic studies with rivaroxaban and ATIII also raise the question of how much FXa 

persists in vivo reversibly bound to the anticoagulant. Determining this is crucial to 

understanding the potential implications of the competition between direct FXa 

inhibitors and endogenous plasma protease inhibitors. It will also allow us to predict 

how much FXa could be liberated upon reversal of anticoagulation with a drug-

sequestering antidote such as GD-FXaS[195]A [112] or aripazine [113]. This could be 

studied by collecting blood samples from anticoagulated patients in a tube containing a 

high concentration of B-EGRCK to trap any FXa in the sample that has not been 

irreversibly inhibited. We could then use an ELISA approach similar to the one used in 

our current studies to measure the amount of FXa reversibly bound to the anticoagulant. 

Unfortunately, our current assay has poor sensitivity below the high picomolar range, 

which will likely limit our ability to detect the trapped FXa in these samples. Thus, it will 

be important to optimize the assay to improve its sensitivity, since even low picomolar 

concentrations of FXa could have clinical significance. Another alternative approach 

would be to perform similar experiments in patients anticoagulated with dabigatran, 

which give information about the persistence of reversibly-inhibited thrombin. This 
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strategy might be better, since thrombin is generated at much higher concentrations 

than FXa and therefore may be easier to detect. 

A counterintuitive but potentially quite interesting implication of this work is that direct 

FXa inhibitors could be used to extend the half-life of FXa-based pro-hemostatic agents. 

wt-FXa is a poor therapeutic agent in part because of its extremely short half-life [28, 

166]. One of the major reasons FXaI[16]L and other zymogen-like FXa variants are 

effective procoagulants in vivo is due to their extended half-lives [60, 167]. Because 

direct FXa inhibitors impair the inhibition of FXa by plasma protease inhibitors, they are 

capable of dramatically extending the half-life of wt-FXa in a concentration-dependent 

manner. Since we have also shown that a small portion of the reversibly-inhibited FXa 

remains completely uninhibited, a direct FXa inhibitor could work in conjunction with 

wt-FXa to make it an effective, pro-hemostatic therapeutic with a long half-life. This 

could be evaluated by administration of wt-FXa alone or wt-FXa combined with 

rivaroxaban to hemophilic mice. We have previously shown (unpublished data) that wt-

FXa does not restore hemostasis in murine bleeding or thrombosis models in hemophilic 

animals. If the combination of wt-FXa and rivaroxaban were to restore hemostasis, this 

would suggest that rivaroxaban can paradoxically enhance the pro-hemostatic potential 

of FXa by extending its half-life. 

Conclusions 

Chymotrypsin-like serine proteases have numerous biological roles, from digestion to 

allergy and inflammation [3]. While the catalytic function of these enzymes is important, 

regulation of these enzymes to prevent unwanted proteolysis is of equal significance, and 
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dysregulation can lead to disease [1]. This is readily apparent in hemostasis, where serine 

proteases are the machines of the clotting cascade, allowing for rapid, localized 

formation of a protein thrombus following vascular injury. Coagulation has a 

tremendous impact on human health, and disordered hemostasis is responsible for many 

diseases. Consequently, several pharmacologic agents designed to modulate blood 

coagulation have been developed. However, despite the placement of serine proteases at 

the heart of hemostasis, direct antagonists of these enzymes have only recently been 

approved for use as anticoagulants. Although these new agents are intended to block the 

catalytic function of their serine protease targets, little is known about their effect on the 

regulatory processes of coagulation. 

In this dissertation, we determined that direct inhibitors of coagulation FXa and 

thrombin impair the action of the key regulators of coagulation serine protease activity 

in plasma. For FXa, we showed that this phenomenon is true of any active site inhibitor 

of the enzyme, meaning that there is no way to engineer an anticoagulant that inhibits 

the active site without also disrupting the action of plasma protease inhibitors. By 

combining these results with an in silico simulation of the kinetics of FXa inhibition, we 

found that, under conditions where FXa is either rapidly generated or else exogenously 

administered, there is a paradoxical increase of free, uninhibited FXa in the presence of 

the target-specific anticoagulant. Critically, these observations were made at 

pharmacologically relevant concentrations of these drugs, suggesting that such a 

phenomenon could occur during anticoagulant therapy. These results also explain our 

observation that a zymogen-like variant of FXa was effective in vivo to reverse the 

anticoagulant effects of direct FXa inhibitors. Such a reversal agent could be useful in 

emergency settings to either stop bleeding or restore normal hemostasis in an 
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anticoagulated patient. Together, these studies provide evidence for the first mechanism-

driven bypassing strategy for direct FXa inhibitors. Perhaps more importantly, this work 

highlights the importance of both catalysis and regulation in serine protease biology and 

demonstrates that both aspects must be considered when developing a targeted therapy. 
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Summary  

Background:  Approximately 30% of hemophilia A (HA) and 5% of hemophilia B 

patients develop inhibitors to protein replacement therapy which is the major cause of 

disease-related morbidity in the developed world. We previously developed zymogen-like 

factor Xa (FXa) molecules with impaired active site maturation enabling a greater half-

life than wild-type FXa while maintaining full procoagulant function in the 

prothrombinase complex. Here we evaluated the ability of zymogen-like FXaI[16]L to 

correct whole blood thromboelastometry abnormalities of severe HA subjects with and 

without inhibitors.  

Methods:  14 severe HA subjects without and 5 with inhibitors were enrolled at baseline 

(FVIII:C <1%) >5 half lives from factor or bypass therapy. Subjects’ whole blood was 

evaluated by thromboelastography (ROTEM®) using INTEM analysis with two 

concentrations of FXaI[16]L or recombinant factor VIIa (rFVIIa).  

Results: With 0.1 nM FXaI[16]L, CT in minutes (min) among HA subjects without and 

with inhibitors (mean=2.87 min, 95% CI=2.58-3.15 min and mean=2.9 min, 95% 

CI=2.07-3.73 min, respectively) did not significantly differ from control CT (mean=2.73 

min, 95% CI=2.62-2.85 min). Addition of 20nM rFVIIa, simulating a 90µg/kg dose, 

resulted in significantly prolonged CTs for HA subjects without and with inhibitors 

(mean=5.43 min, 95% CI=4.53-6.35 min and mean=4.25 min, 95% CI=3.32-5.17 min, 

respectively) relative to controls.  

Conclusions:  FXaI[16]L restored thromboelastometry CT to control values in severe HA 

subjects with and without inhibitors. Findings corroborate previous animal data and 
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demonstrate the first evidence of zymogen-like FXaI[16]L to correct human HA subject 

whole blood abnormalities and support the use of FXaI[16]L as a novel hemostatic agent.
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Introduction 

Congenital hemophilia is characterized by deficiency of factor VIII (hemophilia A [HA]) 

or factor IX (hemophilia B [HB]).  Patients incur sequelae of bleeding resulting from 

inadequate production of activated factor X (FXa) and ultimately thrombin. Specifically, 

factor VIII (FVIII) and factor IX (FIX) maintain hemostasis through their essential role 

in the intrinsic pathway converting zymogen FX to the active protease FXa. Thereafter, 

the assembled prothrombinase complex (membrane-bound FXa and its cofactor factor 

Va [FVa]) converts prothrombin to thrombin, which then activates platelets and converts 

fibrinogen to insoluble fibrin, yielding a hemostatic plug [4, 168]. Therapeutically, this 

aberration in hemophilia patients is restored by peripheral administration of plasma 

derived or recombinant protein products [169, 170].  

Despite the overwhelming positive impact of protein replacement therapy, up to 30% of 

patients with HA and 5% of patients with HB develop neutralizing alloantibodies 

(inhibitors) to protein replacement which now accounts for the major cause of disease 

related morbidity and mortality in developed nations [171, 172]. Currently available 

bypassing agents (i.e. recombinant activated factor VII [rFVIIa] and activated 

prothrombin complex concentrates [aPCCs]) are directed at FXa production and thereby 

thrombin formation [130, 173]. These strategies to bypass the defective intrinsic pathway 

are viable to achieve hemostasis in most patients with inhibitors, but are not universally 

effective and do not completely normalize thrombin generation [173-175]. Additionally, 

bypass therapies have associated prothrombotic risk (particularly if management 

requires tandem bypassing agents), in the case of aPCCs, are plasma-derived with 

intendant risks of blood borne disease, and need for frequent infusions results in costly 



www.manaraa.com

119 

 

treatment [173, 176-178]. 

As an alternative, administration of FXa to increase prothrombinase complex formation 

would represent a direct approach for thrombin formation. However, wild-type (wt)-FXa 

is limited by its rapid inactivation by physiologic inhibitors resulting in a short half-life 

(<1-2 minutes). Further, the ability of the free protease to activate a range of 

procoagulant clotting factors with possible pathological activation of coagulation could 

also be problematic [28, 179, 180]. Collectively, these realities preclude the use of wt-FXa 

as a bypassing therapeutic. 

Drawing from the known biochemical properties common to all chymotrypsin-like serine 

proteases, we previously developed FXa variants (e.g. FXaI[16]L, chymotrypsinogen 

numbering system [23]) with impaired conformational transition from zymogen to active 

protease [44, 59, 60]. For FX, zymogen cleavage between Arg15-Ile16 results in a new N-

terminus consisting of the conserved amino acid sequence Ile16-Val-Gly-Gly. The 

insertion of the nascent N-terminus into a binding pocket followed by salt bridge 

formation with Asp194 confers a conformational change driving the zymogen to the active 

protease state, critical for full enzymatic function. Modification of FXa at Ile16 and Val17 

results in an immature active site, thereby altering the protein to adopt a zymogen-like 

state. This effectively causes a redistribution of the zymogen-protease equilibrium that 

normally lies towards the mature protease. As a consequence of this altered 

conformation, FXaI[16]L is less susceptible to plasma protease inhibitors and therefore has 

a prolonged half-life (>30 minutes). Importantly however, FVa preferentially binds the 

protease conformation of zymogen-like FXa effectively ‘rescuing’ the active protease 

through the principle of mass action. Evaluation of FXaI[16]L in murine hemophilia 
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models has not demonstrated evidence of systemic activation of coagulation or 

undesired thrombus formation [59, 60]. The net effect is full procoagulant function and 

normal thrombin generation demonstrated in both ex vivo and in vivo murine HB and 

HA models [44, 59, 60].    

Here we examined whether these FXa variants may be effective procoagulants for 

hemostatic management of hemophilia patients using an ex vivo approach. This work 

follows demonstrated efficacy in animal studies and is the first human data. We 

evaluated if zymogen-like FXaI[16]L corrects whole blood thromboelastometry hemostatic 

abnormalities observed in HA subjects with and without inhibitors and compared the 

results to the most widely used bypassing agent, rFVIIa.  

Methods 

The Children’s Hospital of Philadelphia Institutional Review Board approved participant 

recruitment for this study.  Signed informed consent (parent with child assent where 

appropriate) was obtained prior to participation.  Severe HA subjects without inhibitors 

(HA) and with inhibitors (HA-I) were prospectively and consecutively recruited during 

outpatient visits to the Hemophilia and Thrombosis Center at CHOP. Subjects were 

enrolled at hemostatic baseline (FVIII:C <1%). Factor VIII activity and inhibitor values 

(Bethesda assay) were determined from the same blood draw at sample collection.  

Patients were excluded from this study if they were <1 year, within 5 half lives of factor 

replacement or bypass therapy, and/or had a known or suspected secondary hemostatic 

abnormality.    

Blood was collected via peripheral venipuncture into a 3.8% sodium citrate vacutainer.  
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Subject whole blood hemostatic abnormalities were assessed by ROTEM® 

thromboelastometry using the INTEM® assay. The INTEM reagent, an intrinsic pathway 

activator comprised of kaolin, in the presence of calcium chloride, initiated coagulation.  

Experimental conditions varied only with respect to the addition of supplemental 

protein, which included either: 0.05 or 0.1nM FXaI[16]L, 20 nM rFVIIa, FVa with or 

without 2 nM FXaI[16]L, or no supplemental protein (buffer). Thromboelastometry assay 

analysis was uniformly initiated one hour following peripheral venipuncture. Control 

samples from five hemostatically normal subjects on no medications were collected and 

analyzed under the same conditions as study subjects. Differences between HA and HA-I 

subjects without and with addition of FXaI[16]L or rFVIIa were analyzed using a paired t-

test. One-way analysis of variance (one-way ANOVA) was used to evaluate INTEM clot 

time differences among controls, HA subjects and HA-I subjects for each experimental 

condition. Adjusted p-values were computed using the Tukey-Kramer procedure, p-

values <0.05 were considered significant. Equality of HA, HA-I and control group 

variances were evaluated by Levene's test.  

Results/Discussion 

Fourteen HA subjects and 5 HA-I subjects were enrolled. All subjects were male ages 1 to 

11 years with confirmed FVIII:C <1% at the time of blood draw. Among the 5 subjects 

with inhibitors, ages ranged from 3 to 11 years with inhibitor values at time of enrollment 

of 26-96 Bethesda Units (B.U.). Five control subjects were enrolled. All control subjects 

were adults. Control INTEM assay parameters were consistent with published normal 

adult values. Of note, adult INTEM clot time (CT) normal values, minimally, if at all, 

differ from published >6 months pediatric normal values [181, 182].   
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As expected, CT was the most abnormal parameter in HA and HA-I subjects and thus, 

the focus of our analysis under varying experimental conditions. Figure 1 presents CT 

times for the control group at baseline as well as HA and HA-I groups at baseline and in 

the presence of 0.1nM FXaI[16]L and 20nM rFVIIa. Among HA and the HA-I subjects, pre-

treatment INTEM CTs were significantly greater than control CT (Figure 1; p=0.006, HA 

mean=6.35 min, 95% CI=5.13-7.57 min; and p=0.001, HA-I mean=4.82 min, 95% 

CI=4.82-11.15 min; control mean=2.73 min, 95% CI=2.62-2.85 min). HA and HA-I 

baseline CTs were not significantly different (p=0.278). There was no significant 

difference in group variances (Levene’s Test, p=0.254).  

Addition of FXaI[16]L dose dependently decreased INTEM CT in both HA and HA-I 

subjects. Specifically, after the addition of 0.1 nM FXaI[16]L to HA and HA-I subject 

samples, there was no significant difference between HA and HA-I CT from control CT 

(F-Statistic 1.36, p=0.841; HA mean=2.87 min, 95% CI=2.58-3.15 min; HA-I mean=2.90 

min, 95% CI=2.07-3.73 min. Further, Levene’s test for equality of variances was not 

significant, p=0.277. There was no significant difference among CT changes in HA and 

HA-I subjects at baseline and in the presence of 0.1nM FXaI[16]L (p=0.726; HA 

mean=3.49 min, 95% CI=2.35-4.62 min; HA-I mean= 5.10 min, 95% CI=2.44-7.75 min). 

Thus, irrespective of the presence or absence of inhibitors, addition of 0.1 nM FXaI[16]L 

corrected hemophilic subject CT to control findings. 

Next the procoagulant effect of rFVIIa was assessed in 9 of the 14 HA subjects and the 5 

HA-I subjects. A concentration of 20 nM rFVIIa was chosen for comparison to 

approximate plasma concentration achieved after administration of a dose of 90 µg/kg, 

which is commonly employed for bleeding manifestations in hemophilia patients with 
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inhibitors. Although the addition of 20 nM rFVIIa decreased CT in all subjects, CT 

remained significantly prolonged relative to controls for both HA and HA-I subjects 

(p=0.002, HA mean=5.43 min, 95% CI=4.53-6.35 min; and p=0.046, HA-I mean=4.23 

min, 95% CI=3.32-5.17 min; control mean=2.73 min, 95% CI=2.62-2.85 min). As 

expected, in the presence of 20nM rFVIIa, the post-treatment CT did not significantly 

differ between HA and HA-I subjects (p=0.0761) and Levene’s test for equality of 

variances was not significant (p=0.123).  

Figure 2a shows representative tracings from an HA subject with inhibitor, with the 

addition of 0.5 and 0.1 nM FXaI[16]L compared to 20 nM rFVIIa. The delayed and blunted 

tracing profile of the HA-I patient’s blood was essentially restored with 0.1 nM FXaI[16]L 

and was nearly indistinguishable from that of normal control blood. The incomplete 

response with 20 nM rFVIIa highlights the superior effectiveness of rFXaI[16]L on a molar 

basis; however, the data must be interpreted with caution, as conditions in the assay do 

not simulate in vivo conditions such as drug volume of distribution, complete 

phospholipid membrane binding surfaces or tissue factor availability. Nevertheless, the 

data are generally consistent with our prior in vivo mouse studies demonstrating the 

enhanced effectiveness of murine rFXaI[16]L relative to rFVIIa [60].   

Traditional clotting assays employed in medical practice may predict some measure of 

clinical outcome but neither adequately captures the hemostatic effect of bypassing 

agents nor allow for comparison of the hemostatic effect of various bypassing agents.  

Within the hemophilia community, there is growing interest in the potential use of global 

viscoelastic assays (e.g. thromboelastography/thromboelastometry) for monitoring 

therapeutic interventions in hemophilia, particularly those on bypassing therapy [183]. 
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As such, we felt that the ROTEM® INTEM assay would optimize ex vivo capacity to both 

observe the hemostatic effect of FXaI[16]L and allow for comparison to other bypass 

strategies, i.e. rFVIIa. Additionally the use of a kaolin based coagulation initiator 

(INTEM reagent) appears better than tissue factor at discriminating the effects of rFVIIa 

in hemophilia thromboelastography analysis; however, notably these findings are 

generally limited to single center studies [184, 185]. Thromboelastography clot time 

(CT), like thromboelastogram R time, is thought to be a measure specific to alterations in 

coagulation factor protein function and quantity and least influenced (relative to other 

parameters) by fibrinogen, platelet quantity or function [186].   

Although limited by ex vivo analysis, our findings provide initial evidence in human 

whole blood and corroborate animal data demonstrating FXaI[16]L is able to correct 

hemostatic abnormalities observed in murine models of hemophilia [59, 60]. 

Additionally ex vivo findings of this work are consistent with our previous in vivo 

observations supporting that FXaI[16]L is able to restore hemostasis at much lower 

concentrations than rFVIIa [60]. A clear difference between rFVIIa and rFXaI[16]L are 

their half-lives (2-3 hours vs. 30 minutes, respectively). While this is an apparent 

limitation, at present it is unclear how half-life, when coupled to hemostatic effectiveness 

of the product, would actually impact clinical outcome. 

Lastly, due to the requirement of FVa to ‘rescue’ the protease conformation of FXaI[16]L, 

we speculate the procoagulant function of zymogen-like FXa will be limited by the 

availability of FVa. Therefore, FVa is thought to impart procoagulant injury site 

specificity and potentially protect against off target thrombosis. To probe this further, in 

concurrent but separate experiments, we titrated increasing concentrations of FXaI[16]L in 
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HA patient whole blood.  At FXaI[16]L concentrations above 2 nM, CT no longer shortened 

(data not shown) suggesting FXaI[16]L saturation with the in situ generated FVa. To test 

this further, additional FVa was added to the system. As shown in Figure 2b, the addition 

of 2 nM FXaI[16]L and 5 nM FVa shortened the CT beyond that observed with 2 nM 

FXaI[16]L alone and controls. The addition of 10 nM FVa with 2 nM FXaI[16]L further 

shortened CT beyond that observed with 2 nM FXaI[16]L and 5 nM FVa and controls. The 

addition of FVa (5 nM or 10 nM) without FXaI[16]L had no appreciable effect on CT 

relative to HA patient whole blood analysis without added FVa. These results were 

recapitulated in three separate patient samples; however, small sample size precluded 

statistical analysis and further validation of findings. Nonetheless, these observations 

suggest that, through the requirement of FVa to bind and thereby rescue the FXaI[16]L 

protease, available FVa may limit FXaI[16]L procoagulant potential and thereby prevent 

undesired thrombosis. Given the inherent limitations of ex vivo modeling and artificial 

circumstances in which FVa quantity may be limited in this assay system, caution must 

be used in interpreting results.  Nonetheless our findings support what is known about 

the underlying mechanism of FXaI[16]L protease conversion. Specifically, zymogen-like 

FXa molecules may have limited off target prothrombotic potential since available FVa 

dictates their activity. If true, zymogen-like FXa molecules may have less thrombotic risk 

than current bypass therapies. 

Conclusion 

At much lower concentrations than rFVIIa, FXaI[16]L normalized INTEM CT in HA 

subjects both with and without inhibitors. These findings are congruent with prior pre-

clinical hemophilic animal studies and further support the use of FXaI[16]L as an 
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alternative bypassing therapy for hemophilia patients with inhibitors. Further, the 

requirement of FVa to rescue FXaI[16]L protease function suggests procoagulant injury 

site specificity and limited off target thrombotic potential. A Phase I study is currently 

evaluating the safety of FXaI[16]L in healthy human volunteers (ClinicalTrials.gov; 

NCT01897142).   
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Figure Legends 

Figure 1.  Comparison of HA and HA-I subject findings in the presence of 

FXaI[16]L and 20 nM rFVIIa relative to control subjects. Box plots represent 

median, 25% and 75% interquartile ranges; whiskers represent ± 2 standard deviations 

from the mean. Reported p-values are adjusted using the Tukey-Kramer procedures after 

a one-way analysis of variance to evaluate differences from control clot time findings. 

Figure 2. ROTEM tracings comparing various bypassing strategies and 

studying the dependence of FXaI[16]L on FVa. (a) Sample ROTEM tracings 

demonstrate FXaI[16]L dose response relative to rFVIIa. (b) HA subject with an inhibitor: 

ROTEM tracings in the presence of FXaI[16]L and FVa. 
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